Linear Algebra: Undergraduate Texts in Mathematics
Autor Klaus Jänichen Limba Engleză Hardback – 2 sep 1994
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 464.80 lei 6-8 săpt. | |
| Springer – 26 sep 2011 | 464.80 lei 6-8 săpt. | |
| Hardback (1) | 470.88 lei 6-8 săpt. | |
| Springer – 2 sep 1994 | 470.88 lei 6-8 săpt. |
Din seria Undergraduate Texts in Mathematics
- 15%
Preț: 494.55 lei - 17%
Preț: 395.44 lei -
Preț: 409.58 lei - 15%
Preț: 396.08 lei -
Preț: 439.45 lei -
Preț: 387.05 lei - 17%
Preț: 392.45 lei -
Preț: 387.48 lei -
Preț: 306.45 lei - 17%
Preț: 426.71 lei -
Preț: 373.98 lei -
Preț: 427.55 lei - 17%
Preț: 387.00 lei -
Preț: 417.34 lei -
Preț: 458.95 lei -
Preț: 372.67 lei -
Preț: 418.67 lei -
Preț: 419.86 lei - 15%
Preț: 395.48 lei - 15%
Preț: 452.05 lei -
Preț: 371.58 lei -
Preț: 396.81 lei -
Preț: 297.41 lei - 15%
Preț: 427.08 lei -
Preț: 393.40 lei -
Preț: 448.76 lei -
Preț: 420.68 lei - 15%
Preț: 394.77 lei - 17%
Preț: 391.86 lei - 15%
Preț: 429.75 lei -
Preț: 295.50 lei -
Preț: 421.63 lei -
Preț: 388.98 lei -
Preț: 381.19 lei -
Preț: 375.27 lei - 15%
Preț: 501.01 lei -
Preț: 386.74 lei - 15%
Preț: 511.29 lei - 15%
Preț: 430.65 lei -
Preț: 375.27 lei - 15%
Preț: 444.21 lei - 15%
Preț: 553.26 lei -
Preț: 376.75 lei - 15%
Preț: 433.19 lei -
Preț: 390.54 lei -
Preț: 470.62 lei - 15%
Preț: 517.73 lei -
Preț: 371.20 lei - 19%
Preț: 510.64 lei
Preț: 470.88 lei
Nou
Puncte Express: 706
Preț estimativ în valută:
83.35€ • 97.05$ • 72.79£
83.35€ • 97.05$ • 72.79£
Carte tipărită la comandă
Livrare economică 21 ianuarie-04 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387941288
ISBN-10: 0387941282
Pagini: 206
Ilustrații: X, 206 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.47 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387941282
Pagini: 206
Ilustrații: X, 206 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.47 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1. Sets and Maps.- 1.1 Sets.- 1.2 Maps.- 1.3 Test.- 1.4 Remarks on the Literature.- 1.5 Exercises.- 2. Vector Spaces.- 2.1 Real Vector Spaces.- 2.2 Complex Numbers and Complex Vector Spaces.- 2.3 Vector Subspaces.- 2.4 Test.- 2.5 Fields.- 2.6 What Are Vectors?.- 2.7 Complex Numbers 400 Years Ago.- 2.8 Remarks on the Literature.- 2.9 Exercises.- 3. Dimension.- 3.1 Linear Independence.- 3.2 The Concept of Dimension.- 3.3 Test.- 3.4 Proof of the Basis Extension Theorem and the Exchange Lemma.- 3.5 The Vector Product.- 3.6 The “Steinitz Exchange Theorem”.- 3.7 Exercises.- 4. Linear Maps.- 4.1 Linear Maps.- 4.2 Matrices.- 4.3 Test.- 4.4 Quotient Spaces.- 4.5 Rotations and Reflections in the Plane.- 4.6 Historical Aside.- 4.7 Exercises.- 5. Matrix Calculus.- 5.1 Multiplication.- 5.2 The Rank of a Matrix.- 5.3 Elementary Transformations.- 5.4 Test.- 5.5 How Does One Invert a Matrix?.- 5.6 Rotations and Reflections (continued).- 5.7 Historical Aside.- 5.8 Exercises.- 6. Determinants.- 6.1 Determinants.- 6.2 Determination of Determinants.- 6.3 The Determinant of the Transposed Matrix.- 6.4 Determinantal Formula for the Inverse Matrix.- 6.5 Determinants and Matrix Products.- 6.6 Test.- 6.7 Determinant of an Endomorphism.- 6.8 The Leibniz Formula.- 6.9 Historical Aside.- 6.10 Exercises.- 7. Systems of Linear Equations.- 7.1 Systems of Linear Equations.- 7.2 Cramer’s Rule.- 7.3 Gaussian Elimination.- 7.4 Test.- 7.5 More on Systems of Linear Equations.- 7.6 Captured on Camera!.- 7.7 Historical Aside.- 7.8 Remarks on the Literature.- 7.9 Exercises.- 8. Euclidean Vector Spaces.- 8.1 Inner Products.- 8.2 Orthogonal Vectors.- 8.3 Orthogonal Maps.- 8.4 Groups.- 8.5 Test.- 8.6 Remarks on the Literature.- 8.7 Exercises.- 9. Eigenvalues.- 9.1 Eigenvalues and Eigenvectors.- 9.2 TheCharacteristic Polynomial.- 9.3 Test.- 9.4 Polynomials.- 9.5 Exercises.- 10. The Principal Axes Transformation.- 10.1 Self-Adjoint Endomorphisms.- 10.2 Symmetric Matrices.- 10.3 The Principal Axes Transformation for Self-Adjoint Endomorphisms.- 10.4 Test.- 10.5 Exercises.- 11. Classification of Matrices.- 11.1 What Is Meant by “Classification”?.- 11.2 The Rank Theorem.- 11.3 The Jordan Normal Form.- 11.4 More on the Principal Axes Transformation.- 11.5 The Sylvester Inertia Theorem.- 11.6 Test.- 11.7 Exercises.- 12. Answers to the Tests.- References.