Mathematical Reflections: In a Room with Many Mirrors: Undergraduate Texts in Mathematics
Autor Peter Hilton, Derek Holton, Jean Pedersenen Limba Engleză Hardback – 13 dec 1996
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 380.62 lei 6-8 săpt. | |
| Springer – 27 sep 2012 | 380.62 lei 6-8 săpt. | |
| Hardback (1) | 389.65 lei 6-8 săpt. | |
| Springer – 13 dec 1996 | 389.65 lei 6-8 săpt. |
Din seria Undergraduate Texts in Mathematics
- 15%
Preț: 494.55 lei - 17%
Preț: 395.44 lei -
Preț: 409.58 lei -
Preț: 420.68 lei -
Preț: 439.45 lei -
Preț: 417.34 lei - 17%
Preț: 387.00 lei -
Preț: 418.67 lei -
Preț: 306.45 lei -
Preț: 349.71 lei - 15%
Preț: 394.77 lei -
Preț: 428.94 lei - 17%
Preț: 393.06 lei -
Preț: 297.91 lei - 15%
Preț: 429.75 lei -
Preț: 372.67 lei -
Preț: 420.68 lei - 15%
Preț: 396.08 lei -
Preț: 384.50 lei - 15%
Preț: 452.05 lei -
Preț: 387.05 lei -
Preț: 396.81 lei -
Preț: 371.58 lei -
Preț: 295.50 lei -
Preț: 373.98 lei -
Preț: 388.98 lei -
Preț: 387.48 lei - 15%
Preț: 436.05 lei - 17%
Preț: 391.86 lei - 17%
Preț: 426.71 lei -
Preț: 421.63 lei -
Preț: 382.64 lei -
Preț: 381.19 lei -
Preț: 375.27 lei - 15%
Preț: 501.01 lei -
Preț: 386.74 lei - 15%
Preț: 511.29 lei - 15%
Preț: 430.65 lei -
Preț: 375.27 lei - 15%
Preț: 444.21 lei - 15%
Preț: 553.26 lei -
Preț: 376.75 lei - 15%
Preț: 433.19 lei -
Preț: 390.54 lei -
Preț: 470.62 lei - 15%
Preț: 517.73 lei -
Preț: 371.20 lei - 19%
Preț: 510.64 lei
Preț: 389.65 lei
Nou
Puncte Express: 584
Preț estimativ în valută:
68.95€ • 80.85$ • 60.55£
68.95€ • 80.85$ • 60.55£
Carte tipărită la comandă
Livrare economică 04-18 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387947709
ISBN-10: 0387947701
Pagini: 352
Ilustrații: XVI, 352 p.
Dimensiuni: 178 x 254 x 23 mm
Greutate: 0.82 kg
Ediția:1997
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387947701
Pagini: 352
Ilustrații: XVI, 352 p.
Dimensiuni: 178 x 254 x 23 mm
Greutate: 0.82 kg
Ediția:1997
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1 Going Down the Drain.- 1.1 Constructions.- 1.2 Cobwebs.- 1.3 Consolidation.- 1.4 Fibonacci Strikes.- 1.5 Dénouement.- 2 A Far Nicer Arithmetic.- 2.1 General Background: What You Already Know.- 2.2 Some Special Moduli: Getting Ready for the Fun.- 2.3 Arithmetic mod p: Some Beautiful Mathematics.- 2.4 Arithmetic mod Non-primes: The Same But Different.- 2.5 Primes, Codes, and Security.- 2.6 Casting Out 9’s and 11’s: Tricks of the Trade.- 3 Fibonacci and Lucas Numbers.- 3.1 A Number Trick.- 3.2 The Explanation Begins.- 3.3 Divisibility Properties.- 3.4 The Number Trick Finally Explained.- 3.5 More About Divisibility.- 3.6 A Little Geometry!.- 4 Paper-Folding and Number Theory.- 4.1 Introduction: What You Can Do With—and Without—Euclidean Tools.- 4.2 Going Beyond Euclid: Folding 2-Period Regular Polygons.- 4.3 Folding Numbers.- 4.4 Some Mathematical Tidbits.- 4.5 General Folding Procedures.- 4.6 The Quasi-Order Theorem.- 4.7 Appendix: A Little Solid Geometry.- 5 Quilts and Other Real-World Decorative Geometry.- 5.1 Quilts.- 5.2 Variations.- 5.3 Round and Round.- 5.4 Up the Wall.- 6 Pascal, Euler, Triangles, Windmills.- 6.1 Introduction: A Chance to Experiment.- 6.2 The Binomial Theorem.- 6.3 The Pascal Triangle and Windmill.- 6.4 The Pascal Flower and the Generalized Star of David.- 6.5 Eulerian Numbers and Weighted Sums.- 6.6 Even Deeper Mysteries.- 7 Hair and Beyond.- 7.1 A Problem with Pigeons, and Related Ideas.- 7.2 The Biggest Number.- 7.3 The Big Infinity.- 7.4 Other Sets of Cardinality ?0.- 7.5 Schröder and Bernstein.- 7.6 Cardinal Arithmetic.- 7.7 Even More Infinities?.- 8 An Introduction to the Mathematics of Fractal Geometry.- 8.1 Introduction to the Introduction: What’s Different About Our Approach.- 8.2 Intuitive Notion of Self-Similarity.- 8.3The lént Map and the Logistic Map.- 8.4 Some More Sophisticated Material.- An Introduction to the Mathematics of Fractal Geometry.- 8.1 Introduction to the Introduction: What’s Different About Our Approach.- 8.2 Intuitive Notion of Self-Similarity.- 8.3 The tent Map and and the Logistic Map.- 8.4 Some more Sophisticated Material.- 9 Some of Our Own Reflections.- 9.1 General Principles.- 9.2 Specific Principles.- 9.3 Appendix: Principles of Mathematical Pedagogy.
Caracteristici
Includes supplementary material: sn.pub/extras Request lecturer material: sn.pub/lecturer-material