Multiple Classifier Systems: First International Workshop, MCS 2000 Cagliari, Italy, June 21-23, 2000 Proceedings: Lecture Notes in Computer Science, cartea 1857
Editat de Josef Kittler, Fabio Rolien Limba Engleză Paperback – 14 iun 2000
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (3) | 323.83 lei 6-8 săpt. | |
| Springer – 12 iun 2002 | 323.83 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 14 iun 2000 | 325.79 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 20 iun 2001 | 328.29 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.14 lei - 20%
Preț: 461.32 lei - 20%
Preț: 460.98 lei - 20%
Preț: 390.41 lei - 20%
Preț: 526.98 lei - 15%
Preț: 388.21 lei - 20%
Preț: 461.21 lei - 20%
Preț: 390.08 lei - 20%
Preț: 496.30 lei - 20%
Preț: 461.21 lei - 20%
Preț: 389.45 lei - 15%
Preț: 461.53 lei - 20%
Preț: 389.63 lei - 20%
Preț: 496.68 lei - 20%
Preț: 461.70 lei - 20%
Preț: 251.97 lei - 20%
Preț: 390.86 lei - 20%
Preț: 532.16 lei - 20%
Preț: 461.52 lei - 20%
Preț: 255.72 lei - 20%
Preț: 498.10 lei - 20%
Preț: 497.19 lei - 20%
Preț: 499.02 lei - 20%
Preț: 389.82 lei - 20%
Preț: 390.92 lei - 20%
Preț: 390.86 lei - 20%
Preț: 390.92 lei - 20%
Preț: 390.08 lei - 20%
Preț: 461.45 lei - 20%
Preț: 392.36 lei - 20%
Preț: 460.75 lei - 20%
Preț: 461.32 lei - 20%
Preț: 389.90 lei - 20%
Preț: 639.26 lei - 20%
Preț: 390.66 lei - 20%
Preț: 391.57 lei - 20%
Preț: 389.57 lei - 20%
Preț: 497.97 lei - 20%
Preț: 462.36 lei - 20%
Preț: 460.67 lei - 20%
Preț: 423.95 lei - 5%
Preț: 515.91 lei - 15%
Preț: 535.55 lei - 20%
Preț: 531.90 lei - 20%
Preț: 403.00 lei - 20%
Preț: 535.41 lei - 20%
Preț: 461.25 lei - 20%
Preț: 498.17 lei - 20%
Preț: 461.52 lei - 20%
Preț: 249.77 lei
Preț: 325.79 lei
Preț vechi: 407.24 lei
-20%
Puncte Express: 489
Preț estimativ în valută:
57.68€ • 67.16$ • 50.10£
57.68€ • 67.16$ • 50.10£
Carte tipărită la comandă
Livrare economică 24 februarie-10 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540677048
ISBN-10: 3540677046
Pagini: 424
Ilustrații: XII, 408 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540677046
Pagini: 424
Ilustrații: XII, 408 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Ensemble Methods in Machine Learning.- Experiments with Classifier Combining Rules.- The “Test and Select” Approach to Ensemble Combination.- A Survey of Sequential Combination of Word Recognizers in Handwritten Phrase Recognition at CEDAR.- Multiple Classifier Combination Methodologies for Different Output Levels.- A Mathematically Rigorous Foundation for Supervised Learning.- Classifier Combinations: Implementations and Theoretical Issues.- Some Results on Weakly Accurate Base Learners for Boosting Regression and Classification.- Complexity of Classification Problems and Comparative Advantages of Combined Classifiers.- Effectiveness of Error Correcting Output Codes in Multiclass Learning Problems.- Combining Fisher Linear Discriminants for Dissimilarity Representations.- A Learning Method of Feature Selection for Rough Classification.- Analysis of a Fusion Method for Combining Marginal Classifiers.- A hybrid projection based and radial basis function architecture.- Combining Multiple Classifiers in Probabilistic Neural Networks.- Supervised Classifier Combination through Generalized Additive Multi-model.- Dynamic Classifier Selection.- Boosting in Linear Discriminant Analysis.- Different Ways of Weakening Decision Trees and Their Impact on Classification Accuracy of DT Combination.- Applying Boosting to Similarity Literals for Time Series Classification.- Boosting of Tree-Based Classifiers for Predictive Risk Modeling in GIS.- A New Evaluation Method for Expert Combination in Multi-expert System Designing.- Diversity between Neural Networks and Decision Trees for Building Multiple Classifier Systems.- Self-Organizing Decomposition of Functions.- Classifier Instability and Partitioning.- A Hierarchical Multiclassifier System for Hyperspectral Data Analysis.-Consensus Based Classification of Multisource Remote Sensing Data.- Combining Parametric and Nonparametric Classifiers for an Unsupervised Updating of Land-Cover Maps.- A Multiple Self-Organizing Map Scheme for Remote Sensing Classification.- Use of Lexicon Density in Evaluating Word Recognizers.- A Multi-expert System for Dynamic Signature Verification.- A Cascaded Multiple Expert System for Verification.- Architecture for Classifier Combination Using Entropy Measures.- Combining Fingerprint Classifiers.- Statistical Sensor Calibration for Fusion of Different Classifiers in a Biometric Person Recognition Framework.- A Modular Neuro-Fuzzy Network for Musical Instruments Classification.- Classifier Combination for Grammar-Guided Sentence Recognition.- Shape Matching and Extraction by an Array of Figure-and-Ground Classifiers.
Caracteristici
Includes supplementary material: sn.pub/extras