Multiple Classifier Systems: Second International Workshop, MCS 2001 Cambridge, UK, July 2-4, 2001 Proceedings: Lecture Notes in Computer Science, cartea 2096
Editat de Josef Kittler, Fabio Rolien Limba Engleză Paperback – 20 iun 2001
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (3) | 323.83 lei 6-8 săpt. | |
| Springer – 12 iun 2002 | 323.83 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 14 iun 2000 | 325.79 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 20 iun 2001 | 328.29 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.14 lei - 20%
Preț: 461.32 lei - 20%
Preț: 460.98 lei - 20%
Preț: 390.41 lei - 20%
Preț: 526.98 lei - 15%
Preț: 388.21 lei - 20%
Preț: 461.21 lei - 20%
Preț: 390.08 lei - 20%
Preț: 496.30 lei - 20%
Preț: 461.21 lei - 20%
Preț: 389.45 lei - 15%
Preț: 461.53 lei - 20%
Preț: 389.63 lei - 20%
Preț: 496.68 lei - 20%
Preț: 461.70 lei - 20%
Preț: 251.97 lei - 20%
Preț: 390.86 lei - 20%
Preț: 532.16 lei - 20%
Preț: 461.52 lei - 20%
Preț: 255.72 lei - 20%
Preț: 498.10 lei - 20%
Preț: 497.19 lei - 20%
Preț: 499.02 lei - 20%
Preț: 389.82 lei - 20%
Preț: 390.92 lei - 20%
Preț: 390.86 lei - 20%
Preț: 390.92 lei - 20%
Preț: 390.08 lei - 20%
Preț: 461.45 lei - 20%
Preț: 392.36 lei - 20%
Preț: 460.75 lei - 20%
Preț: 461.32 lei - 20%
Preț: 389.90 lei - 20%
Preț: 639.26 lei - 20%
Preț: 390.66 lei - 20%
Preț: 391.57 lei - 20%
Preț: 389.57 lei - 20%
Preț: 497.97 lei - 20%
Preț: 462.36 lei - 20%
Preț: 460.67 lei - 20%
Preț: 423.95 lei - 5%
Preț: 515.91 lei - 15%
Preț: 535.55 lei - 20%
Preț: 531.90 lei - 20%
Preț: 403.00 lei - 20%
Preț: 535.41 lei - 20%
Preț: 461.25 lei - 20%
Preț: 498.17 lei - 20%
Preț: 461.52 lei - 20%
Preț: 249.77 lei
Preț: 328.29 lei
Preț vechi: 410.37 lei
-20%
Puncte Express: 492
Preț estimativ în valută:
58.12€ • 67.68$ • 50.49£
58.12€ • 67.68$ • 50.49£
Carte tipărită la comandă
Livrare economică 24 februarie-10 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540422846
ISBN-10: 3540422846
Pagini: 476
Ilustrații: XII, 456 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.66 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540422846
Pagini: 476
Ilustrații: XII, 456 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.66 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Bagging and Boosting.- Bagging and the Random Subspace Method for Redundant Feature Spaces.- Performance Degradation in Boosting.- A Generalized Class of Boosting Algorithms Based on Recursive Decoding Models.- Tuning Cost-Sensitive Boosting and Its Application to Melanoma Diagnosis.- Learning Classification RBF Networks by Boosting.- MCS Design Methodology.- Data Complexity Analysis for Classifier Combination.- Genetic Programming for Improved Receiver Operating Characteristics.- Methods for Designing Multiple Classifier Systems.- Decision-Level Fusion in Fingerprint Verification.- Genetic Algorithms for Multi-classifier System Configuration: A Case Study in Character Recognition.- Combined Classification of Handwritten Digits Using the ‘Virtual Test Sample Method’.- Averaging Weak Classifiers.- Mixing a Symbolic and a Subsymbolic Expert to Improve Carcinogenicity Prediction of Aromatic Compounds.- Ensemble Classifiers.- Multiple Classifier Systems Based on Interpretable Linear Classifiers.- Least Squares and Estimation Measures via Error Correcting Output Code.- Dependence among Codeword Bits Errors in ECOC Learning Machines: An Experimental Analysis.- Information Analysis of Multiple Classifier Fusion?.- Limiting the Number of Trees in Random Forests.- Learning-Data Selection Mechanism through Neural Networks Ensemble.- A Multi-SVM Classification System.- Automatic Classification of Clustered Microcalcifications by a Multiple Classifier System.- Feature Spaces for MCS.- Feature Weighted Ensemble Classifiers – A Modified Decision Scheme.- Feature Subsets for Classifier Combination: An Enumerative Experiment.- Input Decimation Ensembles: Decorrelation through Dimensionality Reduction.- Classifier Combination as a Tomographic Process.- MCS in Remote Sensing.- ARobust Multiple Classifier System for a Partially Unsupervised Updating of Land-Cover Maps.- Combining Supervised Remote Sensing Image Classifiers Based on Individual Class Performances.- Boosting, Bagging, and Consensus Based Classification of Multisource Remote Sensing Data.- Solar Wind Data Analysis Using Self-Organizing Hierarchical Neural Network Classifiers.- One Class MCS and Clustering.- Combining One-Class Classifiers.- Finding Consistent Clusters in Data Partitions.- A Self-Organising Approach to Multiple Classifier Fusion.- Combination Strategies.- Error Rejection in Linearly Combined Multiple Classifiers.- Relationship of Sum and Vote Fusion Strategies.- Complexity of Data Subsets Generated by the Random Subspace Method: An Experimental Investigation.- On Combining Dissimilarity Representations.- Application of Multiple Classifier Techniques to Subband Speaker Identification with an HMM/ANN System.- Classification of Time Series Utilizing Temporal and Decision Fusion.- Use of Positional Information in Sequence Alignment for Multiple Classifier Combination.- Application of the Evolutionary Algorithms for Classifier Selection in Multiple Classifier Systems with Majority Voting.- Tree-Structured Support Vector Machines for Multi-class Pattern Recognition.- On the Combination of Different Template Matching Strategies for Fast Face Detection.- Improving Product by Moderating k-NN Classifiers.- Automatic Model Selection in a Hybrid Perceptron/Radial Network.
Caracteristici
Includes supplementary material: sn.pub/extras