Multiple Classifier Systems
Editat de Fabio Roli, Josef Kittleren Limba Engleză Paperback – 12 iun 2002
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (3) | 323.83 lei 6-8 săpt. | |
| Springer – 12 iun 2002 | 323.83 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 14 iun 2000 | 325.79 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 20 iun 2001 | 328.29 lei 6-8 săpt. |
Preț: 323.83 lei
Preț vechi: 404.79 lei
-20% Nou
Puncte Express: 486
Preț estimativ în valută:
57.30€ • 66.83$ • 50.31£
57.30€ • 66.83$ • 50.31£
Carte tipărită la comandă
Livrare economică 15-29 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540438182
ISBN-10: 3540438181
Pagini: 352
Ilustrații: X, 342 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:2002
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540438181
Pagini: 352
Ilustrații: X, 342 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:2002
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Invited Papers.- Multiclassifier Systems: Back to the Future.- Support Vector Machines, Kernel Logistic Regression and Boosting.- Multiple Classification Systems in the Context of Feature Extraction and Selection.- Bagging and Boosting.- Boosted Tree Ensembles for Solving Multiclass Problems.- Distributed Pasting of Small Votes.- Bagging and Boosting for the Nearest Mean Classifier: Effects of Sample Size on Diversity and Accuracy.- Highlighting Hard Patterns via AdaBoost Weights Evolution.- Using Diversity with Three Variants of Boosting: Aggressive, Conservative, and Inverse.- Ensemble Learning and Neural Networks.- Multistage Neural Network Ensembles.- Forward and Backward Selection in Regression Hybrid Network.- Types of Multinet System.- Discriminant Analysis and Factorial Multiple Splits in Recursive Partitioning for Data Mining.- Design Methodologies.- New Measure of Classifier Dependency in Multiple Classifier Systems.- A Discussion on the Classifier Projection Space for Classifier Combining.- On the General Application of the Tomographic Classifier Fusion Methodology.- Post-processing of Classifier Outputs in Multiple Classifier Systems.- Combination Strategies.- Trainable Multiple Classifier Schemes for Handwritten Character Recognition.- Generating Classifier Ensembles from Multiple Prototypes and Its Application to Handwriting Recognition.- Adaptive Feature Spaces for Land Cover Classification with Limited Ground Truth Data.- Stacking with Multi-response Model Trees.- On Combining One-Class Classifiers for Image Database Retrieval.- Analysis and Performance Evaluation.- Bias—Variance Analysis and Ensembles of SVM.- An Experimental Comparison of Fixed and Trained Fusion Rules for Crisp Classifier Outputs.- Reduction of the Boasting Bias of Linear Experts.-Analysis of Linear and Order Statistics Combiners for Fusion of Imbalanced Classifiers.- Applications.- Boosting and Classification of Electronic Nose Data.- Content-Based Classification of Digital Photos.- Classifier Combination for In Vivo Magnetic Resonance Spectra of Brain Tumours.- Combining Classifiers of Pesticides Toxicity through a Neuro-fuzzy Approach.- A Multi-expert System for Movie Segmentation.- Decision Level Fusion of Intramodal Personal Identity Verification Experts.- An Experimental Comparison of Classifier Fusion Rules for Multimodal Personal Identity Verification Systems.
Caracteristici
Includes supplementary material: sn.pub/extras