Elliptic Functions: Grundlehren der mathematischen Wissenschaften, cartea 281
Autor Komaravolu Chandrasekharanen Limba Engleză Hardback – sep 1985
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 464.29 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 28 iun 2012 | 464.29 lei 6-8 săpt. | |
| Hardback (1) | 563.17 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – sep 1985 | 563.17 lei 6-8 săpt. |
Din seria Grundlehren der mathematischen Wissenschaften
- 17%
Preț: 539.72 lei - 18%
Preț: 867.65 lei -
Preț: 641.48 lei -
Preț: 371.84 lei - 18%
Preț: 747.16 lei -
Preț: 417.52 lei - 24%
Preț: 685.05 lei - 15%
Preț: 573.68 lei - 15%
Preț: 455.01 lei - 24%
Preț: 654.97 lei -
Preț: 403.27 lei - 15%
Preț: 435.43 lei -
Preț: 343.01 lei -
Preț: 465.91 lei -
Preț: 406.97 lei - 15%
Preț: 427.26 lei - 15%
Preț: 507.50 lei - 15%
Preț: 566.94 lei -
Preț: 340.03 lei - 18%
Preț: 699.51 lei -
Preț: 373.24 lei - 15%
Preț: 437.32 lei - 15%
Preț: 462.55 lei -
Preț: 446.83 lei -
Preț: 348.34 lei -
Preț: 469.46 lei - 15%
Preț: 430.41 lei -
Preț: 403.83 lei - 18%
Preț: 709.63 lei -
Preț: 373.76 lei -
Preț: 403.27 lei - 15%
Preț: 558.62 lei -
Preț: 478.73 lei -
Preț: 346.88 lei -
Preț: 373.03 lei -
Preț: 403.83 lei -
Preț: 436.47 lei -
Preț: 371.73 lei -
Preț: 345.94 lei -
Preț: 483.84 lei -
Preț: 413.24 lei -
Preț: 376.01 lei -
Preț: 380.09 lei - 15%
Preț: 569.29 lei
Preț: 563.17 lei
Preț vechi: 662.55 lei
-15% Nou
Puncte Express: 845
Preț estimativ în valută:
99.64€ • 116.26$ • 87.11£
99.64€ • 116.26$ • 87.11£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540152958
ISBN-10: 3540152954
Pagini: 208
Ilustrații: XI, 192 p.
Dimensiuni: 156 x 234 x 17 mm
Greutate: 0.47 kg
Ediția:1985
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540152954
Pagini: 208
Ilustrații: XI, 192 p.
Dimensiuni: 156 x 234 x 17 mm
Greutate: 0.47 kg
Ediția:1985
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Periods of meromorphic functions.- § 1. Meromorphic functions.- § 2. Periodic meromorphic functions.- § 3. Jacobi’s lemma.- § 4. Elliptic functions.- § 5. The modular group and modular functions.- Notes on Chapter I.- II. General properties of elliptic functions.- §1. The period parallelogram.- § 2. Elementary properties of elliptic functions.- Notes on Chapter II.- III. Weierstrass’s elliptic function ?(z).- §1. The convergence of a double series.- § 2. The elliptic function ?(z).- § 3. The differential equation associated with ?(z).- § 4. The addition-theorem.- § 5. The generation of elliptic functions.- Appendix I. The cubic equation.- Appendix II. The biquadratic equation.- Notes on Chapter III.- IV. The zeta-function and the sigma-function of Weierstrass.- § 1. The function ?(z).- §2. The function ?(z).- § 3. An expression for elliptic functions.- Notes on Chapter IV.- V. The theta-functions.- §1. The function ?(?, ?).- § 2. The four sigma-functions.- § 3. The four theta-functions.- § 4. The differential equation.- § 5. Jacobi’s formula for ?’ (0, ?).- § 6. The infinite products for the theta-functions.- § 7. Theta-functions as solutions of functional equations.- § 8. The transformation formula connecting ?3(v, ?) and ?3(?, ?1/?) ..- Notes on Chapter V.- VI. The modular function J(?).- § 1. Definition of J(?).- § 2. The functions g2(?) and g3(?).- § 3. Expansion of the function J(?) and the connexion with theta-functions.- § 4. The function J(?) in a fundamental domain of the modular group ..- § 5. Relations between the periods and the invariants of ?(u).- § 6. Elliptic integrals of the first kind.- Notes on Chapter VI.- VII. The Jacobian elliptic functions and the modular function ?(?).- § 1.The functions sn u, en u, dn u of Jacobi.- § 2. Definition by theta-functions.- § 3. Connexion with the sigma-functions.- § 4. The differential equation.- § 5. Infinite products for the Jacobian elliptic functions.- § 6. Addition-theorems for sn u, cn u, dn u.- § 7. The modular function ?(?).- §8. Mapping properties of ?(?) and Picard’s theorem.- Notes on Chapter VII.- VIII. Dedekind’s ?-function and Euler’s theorem on pentagonal numbers.- § 1. Connexion with the invariants of the ?-function and with the theta-functions.- § 2. Euler’s theorem and Jacobi’s proof.- § 3. The transformation formula connecting ?(z) and ?(?½).- §4. Siegel’s proof of Theorem 1.- §5. Connexion between ?(z) and the modular functions J(z), ?(z).- Notes on Chapter VIII.- IX. The law of quadratic reciprocity.- § 1. Reciprocity of generalized Gaussian sums.- § 2. Quadratic residues.- §3. The law of quadratic reciprocity.- Notes on Chapter IX.- X. The representation of a number as a sum of four squares ..- §1. The theorems of Lagrange and of Jacobi.- § 2. Proof of Jacobi’s theorem by means of theta-functions.- §3. Siegel’s proof of Jacobi’s theorem.- Notes on Chapter X.- XI. The representation of a number by a quadratic form.- §1. Positive-definite quadratic forms.- § 2. Multiple theta-series and quadratic forms.- § 3. Theta-functions associated to positive-definite forms.- § 4. Representation of an even integer by a positive-definite form.- Notes on Chapter XI.- Chronological table.
Recenzii
"...In the breadth, depth and inevitability of treatment of this beautiful material, the author has made a contribution to the mathematical community consistent with the distinction of his career. That he has succeeded in compressing this treatment into a succinct monograph of fewer than 190 pages is a testament to his taste, discipline and powers of exposition."-- MATHEMATICAL REVIEWS