Jordan-Algebren: Grundlehren der mathematischen Wissenschaften, cartea 128
Autor Hel Braun, Max Koecherde Limba Germană Paperback – 12 feb 2012
Din seria Grundlehren der mathematischen Wissenschaften
- 24%
Preț: 654.97 lei - 17%
Preț: 539.72 lei - 18%
Preț: 867.65 lei -
Preț: 641.48 lei -
Preț: 371.84 lei - 18%
Preț: 747.16 lei -
Preț: 417.52 lei - 24%
Preț: 685.05 lei - 15%
Preț: 573.68 lei - 24%
Preț: 828.39 lei - 18%
Preț: 874.17 lei - 18%
Preț: 875.70 lei - 15%
Preț: 455.01 lei - 15%
Preț: 688.12 lei - 24%
Preț: 1208.66 lei - 20%
Preț: 615.40 lei - 15%
Preț: 435.43 lei -
Preț: 343.01 lei -
Preț: 403.27 lei -
Preț: 465.91 lei -
Preț: 406.97 lei - 15%
Preț: 427.26 lei - 15%
Preț: 507.50 lei - 15%
Preț: 566.94 lei -
Preț: 340.03 lei - 18%
Preț: 699.51 lei -
Preț: 373.24 lei - 15%
Preț: 437.32 lei - 15%
Preț: 462.55 lei -
Preț: 446.83 lei -
Preț: 348.34 lei -
Preț: 469.46 lei - 15%
Preț: 430.41 lei -
Preț: 403.83 lei - 18%
Preț: 709.63 lei -
Preț: 373.76 lei -
Preț: 403.27 lei - 15%
Preț: 558.62 lei -
Preț: 478.73 lei -
Preț: 346.88 lei -
Preț: 373.03 lei -
Preț: 403.83 lei -
Preț: 436.47 lei
Preț: 345.94 lei
Nou
Puncte Express: 519
Preț estimativ în valută:
61.22€ • 71.78$ • 53.76£
61.22€ • 71.78$ • 53.76£
Carte tipărită la comandă
Livrare economică 17 februarie-03 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642949487
ISBN-10: 3642949487
Pagini: 376
Ilustrații: XVI, 358 S.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:1965
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642949487
Pagini: 376
Ilustrații: XVI, 358 S.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:1965
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Erstes Kapitel Einführung.- § 1. Vektorräume über kommutativen Körpern.- § 2. Algebren.- § 3. Hilfsbetrachtungen über kommutative assoziative Algebren.- § 4. Die Minimalzerlegung in potenz-assoziativen Algebren.- § 5. Einfache Algebren.- § 6. Assoziative Linearformen.- § 7. Semi-normale Linearformen und das Radikal.- § 8. Nichtausgeartete potenz-assoziative Algebren.- § 9. Anwendungen auf zentral-einfache Algebren.- § 10. Primäre Algebren.- § 11. Einige Zusammenhänge zwischen den Algebren A und A+.- § 12. Die Peirce-Zerlegung.- § 13. Halbeinfache Algebren.- § 14. Derivationen.- Zweites Kapitel Strikt potenz-assoziative Algebren mit Einselement.- § 1. Differentiation.- § 2. Identitäten für generische Elemente.- § 3. Multiplikative Polynome.- § 4. Das Minimalpolynom eines generischen Elementes.- § 5. Strukturgruppe und Normen.- § 6. Anwendungen auf Algebren vom Grad 1.- § 7. Diskussion eines einfachen Beispiels.- Drittes Kapitel Homogene Algebren.- § l. Die quadratische Darstellung in schwach homogenen Algebren.- § 2. Der Fall einer Charakteristik ungleich 2.- § 3. Homogene Algebren.- § 4. Multiplikativen Polynomen zugeordnete Linearformen.- § 5. Stark homogene Algebren.- § 6. Anwendung auf zentral-einfache Algebren.- § 7. Homogen-zulässige Algebren.- § 8. Algebren ohne Einselement und das Radikal.- § 9. Einfache Algebren.- § 10. Normale Algebren.- § 11. Direkte Summen.- § 12. Assoziative Algebren.- Viertes Kapitel Jordan-Algebren.- § 1. Nichtkommutative Jordan-Algebren.- § 2. Das Inverse.- § 3. Kommutative Jordan-Algebren.- § 4. Mutationen von Jordan-Algebren.- § 5. Jordan-Algebren einer Charakteristik ungleich 2.- § 6. Die Automorphismengruppe A (A).- Fünftes Kapitel Mutationen von Jordan-Algebren.- § 1. EineVerallgemeinerung der Strukturgruppe.- § 2. Anwendungen auf Mutationen.- § 3. Assoziierte Linearformen und multiplikative Polynome.- § 4. Das Verhalten der multiplikativen Polynome bei Abbildungen aus ?(A(1), A(2)).- § 5. Ähnlichkeitsklassen.- Sechstes Kapitel Beispiele von Jordan-Algebren.- § 1. Spezielle Jordan-Algebren.- § 2. Algebren mit Involution.- § 3. Die Jordan-Algebren H(B).- § 4. Die Algebren H, (C).- § 5. Die Jordan-Algebren [X; ?, e].- § 6. Clifford-Algebren.- § 7. Jordan-Algebren vom Grad 1 und 2.- § 8. ?-Bereiche.- Siebentes Kapitel Alternative Algebren und nichtspezielle Jordan-Algebren.- § 1. Grundlegende Eigenschaften von alternativen Algebren.- § 2. Alternative Algebren als homogen-zulässige Algebren.- § 3. Quadratische Algebren.- § 4. Alternative quadratische Algebren.- § 5. Die Algebren H, (C) für quadratische Algebren C.- § 6. Die Jordan-Algebra H3 (C).- § 7. Über die Strukturgruppe der Algebra H3 (C).- Achtes Kapitel Die Peirce-Zerlegung von Jordan-Algebren in bezug auf ein vollständiges Orthogonalsystem.- § 1. Vollständige Orthogonalsysteme Idempotenter.- § 2. Die Peirce-Zerlegung in bezug auf ein vollständiges Orthogonalsystem.- § 3. Einfache Algebren.- § 4. Reguläre Algebren.- § 5. Die Teilalgebren U von A.- § 6. Die Algebren Cij.- § 7. Eine Anwendung auf assoziative Linearformen.- § 8. Ausnahme-Algebren.- § 9. Reduzierte Algebren.- Neuntes Kapitel Derivationen von Jordan-Algebren.- § 1. Eine Beziehung zwischen nichtausgearteten Bilinearformen und linearen Transformationen.- § 2. Derivationen.- § 3. Anwendungen auf Jordan-Algebren.- § 4. Anwendungen auf die Strukturgruppe.- § 5. Die Lie-Algebra der Strukturgruppe.- Zehntes Kapitel Die Klassifikation der einfachen Jordan-Algebren.- § 1. EinIsomorphiesatz..- § 2. Einfache reguläre Algebren.- § 3. Struktursätze für einfache reguläre Algebren.- § 4. Einfache Algebren.- Elftes Kapitel Reelle und komplexe Jordan-Algebren.- § 1. Einige analytische Hilfsmittel.- § 2. Reelle und komplexe Jordan-Algebren.- § 3. Formal-reelle Jordan-Algebren.- § 4, Die Gruppe der linearen Selbstabbildungen von YA.- § 5. Anwendung der Strukturtheorie auf formal-reelle Jordan-Algebren.- § 6. Elementarfunktionen auf formal-reellen Jordan-Algebren.- § 7. Über den Rand des Bereiches YA.