Stability of Motion: Grundlehren der mathematischen Wissenschaften, cartea 138
Autor Wolfgang Hahnen Limba Engleză Paperback – 18 mai 2012
Din seria Grundlehren der mathematischen Wissenschaften
- 24%
Preț: 654.97 lei - 17%
Preț: 539.72 lei - 18%
Preț: 867.65 lei -
Preț: 641.48 lei -
Preț: 371.84 lei - 18%
Preț: 747.16 lei -
Preț: 417.52 lei - 24%
Preț: 685.05 lei - 15%
Preț: 573.68 lei - 24%
Preț: 828.39 lei - 18%
Preț: 874.17 lei - 18%
Preț: 875.70 lei - 15%
Preț: 455.01 lei - 15%
Preț: 688.12 lei - 24%
Preț: 1208.66 lei - 20%
Preț: 615.40 lei - 15%
Preț: 435.43 lei -
Preț: 343.01 lei -
Preț: 403.27 lei -
Preț: 465.91 lei -
Preț: 406.97 lei - 15%
Preț: 427.26 lei - 15%
Preț: 507.50 lei - 15%
Preț: 566.94 lei -
Preț: 340.03 lei - 18%
Preț: 699.51 lei -
Preț: 373.24 lei - 15%
Preț: 437.32 lei - 15%
Preț: 462.55 lei -
Preț: 446.83 lei -
Preț: 348.34 lei -
Preț: 469.46 lei - 15%
Preț: 430.41 lei -
Preț: 403.83 lei - 18%
Preț: 709.63 lei -
Preț: 373.76 lei -
Preț: 403.27 lei - 15%
Preț: 558.62 lei -
Preț: 478.73 lei -
Preț: 346.88 lei -
Preț: 373.03 lei -
Preț: 403.83 lei -
Preț: 436.47 lei
Preț: 569.29 lei
Preț vechi: 669.75 lei
-15% Nou
Puncte Express: 854
Preț estimativ în valută:
100.74€ • 118.13$ • 88.47£
100.74€ • 118.13$ • 88.47£
Carte tipărită la comandă
Livrare economică 17 februarie-03 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642500879
ISBN-10: 3642500870
Pagini: 464
Ilustrații: XII, 448 p. 35 illus.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1967
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642500870
Pagini: 464
Ilustrații: XII, 448 p. 35 illus.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1967
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Generalities.- § 1. The Stability Concept in Mechanics.- § 2. Stability in the Sense of Liapunov.- II. Linear Functional Equations with Constant Coefficients.- § 3. Transfer Units.- § 4. Linear Differential Equations with Constant Coefficients.- § 5. Geometrical Criteria for Stability.- § 6. Algebraic Criteria for Stability.- § 7. Orlando’s Formula.- § 8. Linear Transfer Systems.- § 9. An Example.- § 10. The Nyquist Criterion.- § 11. The Boundary of Stability.- § 12. Linear Differential Difference Equations.- § 13. Stability for Linear Differential Difference Equations with Constant Coefficients.- § 14. Linear Difference Equations with Constant Coefficients.- § 15. Linear Operators.- III. The Equilibrium of Autonomous Differential Equations.- § 16. Fundamental Concepts, Definitions and Notations.- § 17. Homogeneous Right Side.- § 18. General Systems of the Second Order.- § 19. Second Order Systems with Homogeneous Right Sides.- § 20. Second Order Linear Systems.- § 21. Perturbed Second Order Linear Systems.- § 22. Conservative Second Order Systems.- IV. The Direct Method of Liapunov.- § 23. Geometric Interpretation.- § 24. Some Subsidiary Considerations.- § 25. The Principal Theorems of the Direct Method for Autonomous Differential Equations.- § 26. Supplements to the Principal Theorems.- § 27. Construction of a Liapunov Function for a Linear Equation.- § 28. Liapunov Functions for Perturbed Linear Equations.- § 29. The Problem of Aizerman.- § 30. Further Applications of the Direct Method.- § 31. Absolute Stability.- § 32. Popov’s Criterion.- § 33. The Domain of Attraction.- § 34. Zubov’s Theorem.- V. The Direct Method for General Motions.- § 35. The General Stability Concept.- § 36. Extensions and Modifications of the BasicDefinitions.- § 37. Instability and Non-Uniform Stability.- § 38. Relationships between the Stability Types.- § 39. Realizing Some Stability Types.- § 40. An Example for Instability.- § 41. Liapunov Functions.- § 42. Tests for Stability.- § 43. Applications and Examples. I. Differential and Difference Equations.- § 44. Applications and Examples. II. Functional and Partial Differential Equations.- § 45. System Stability and Stability of Invariant Sets.- § 46. Boundedness Criteria. The Parallel Theorems.- VI. The Converse of the Stability Theorems.- § 47. Formulation of the Problem.- § 48. The Converse of the Theorems on Non-Asymptotic Stability.- § 49. The Converse of Theorems on Asymptotic Stability.- § 50. Examples for the Converse Theorems.- § 51. Refinements of the Converse Theorems for Ordinary Differential Equations.- § 52. The Converse of the Instability Theorems.- VII. Stability Properties of Ordinary Differential Equations.- § 53. The Meaning of the Decrescence of Liapunov Functions.- § 54. Existence of a Liapunov Function in Case of Non-Uniform Asymptotic Stability.- § 55. Modified Stability Criteria.- § 56. Perturbed Equations.- § 57. Equations with Homogeneous Right Side.- VIII. Linear Differential Equations.- § 58. The General Solution of a Linear Homogeneous Differential Equation.- § 59. The Nonhomogeneous Linear Equation.- § 60. Linear Equations with Periodic Coefficients.- § 61. The Liapunov Reducibility Theorem.- § 62. Stability Criteria for Special Linear Differential Equations.- § 63. The Order Numbers of a Differential Equation.- § 64. Regular Differential Equations.- § 65. Stability in the First Approximation.- IX. The Liapunov Expansion Theorem.- § 66. Families of Solutions Depending on a Parameter.- § 67. TheLiapunov Expansion Theorem.- X. The Critical Cases for Differential Equations.- § 68. General Remarks Concerning Critical Cases; Subsidiary Results.- § 69. The Principal Theorem of Malkin.- § 70. Simple Critical Cases for Autonomous Equations.- XI. Periodic and Almost Periodic Motions.- § 71. General Remarks on periodic Motions.- § 72. Nonhomogeneous Linear Equations with Periodic External Force.- § 73. Forced Almost Periodic Oscillations.- § 74. Piecewise Linear Equations.- § 75. A System with Several Discontinuity Types.- § 76. Perturbed Linear Equations.- § 77. Perturbed Linear Equations for the Resonance Case.- § 78. Periodic Solutions of Autonomous Equations.- § 79. Critical Cases of Second Order Autonomous Systems.- § 80. The Associated Coordinate System of a Periodic Solution.- § 81. Stability Properties of a Periodic Solution.- § 82. Examples: Testing for Stability.- Author Index.