The Differential Geometry of Finsler Spaces: Grundlehren der mathematischen Wissenschaften, cartea 101
Autor Hanno Runden Limba Engleză Paperback – 19 mai 2012
Din seria Grundlehren der mathematischen Wissenschaften
- 24%
Preț: 654.97 lei - 17%
Preț: 539.72 lei - 18%
Preț: 867.65 lei -
Preț: 641.48 lei -
Preț: 371.84 lei - 18%
Preț: 747.16 lei -
Preț: 417.52 lei - 24%
Preț: 685.05 lei - 15%
Preț: 573.68 lei - 24%
Preț: 1208.66 lei - 15%
Preț: 688.12 lei - 18%
Preț: 875.53 lei - 18%
Preț: 878.28 lei - 15%
Preț: 455.01 lei - 24%
Preț: 828.39 lei - 15%
Preț: 435.43 lei -
Preț: 343.01 lei -
Preț: 403.27 lei -
Preț: 465.91 lei -
Preț: 406.97 lei - 15%
Preț: 427.26 lei - 15%
Preț: 566.94 lei -
Preț: 340.03 lei - 18%
Preț: 699.51 lei -
Preț: 373.24 lei - 15%
Preț: 437.32 lei - 15%
Preț: 462.55 lei -
Preț: 446.83 lei -
Preț: 348.34 lei -
Preț: 469.46 lei - 15%
Preț: 430.41 lei -
Preț: 403.83 lei - 18%
Preț: 709.63 lei -
Preț: 373.76 lei -
Preț: 403.27 lei - 15%
Preț: 558.62 lei -
Preț: 478.73 lei -
Preț: 346.88 lei -
Preț: 373.03 lei -
Preț: 403.83 lei -
Preț: 436.47 lei -
Preț: 371.73 lei
Preț: 507.50 lei
Preț vechi: 597.06 lei
-15% Nou
Puncte Express: 761
Preț estimativ în valută:
89.79€ • 104.61$ • 78.41£
89.79€ • 104.61$ • 78.41£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642516122
ISBN-10: 3642516122
Pagini: 304
Ilustrații: XV, 284 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 1959
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642516122
Pagini: 304
Ilustrații: XV, 284 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 1959
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I: Calculus of Variations. Minkowskian Spaces.- § 1. Problems in the calculus of variations in parametric form.- § 2. The tangent space. The indicatrix.- § 3. The metric tensor and the osculating indicatrix.- § 4. The dual tangent space. The figuratrix.- § 5. The Hamiltonian function.- § 6. The trigonometric functions and orthogonality.- § 7. Definitions of angle.- § 8. Area and Volume.- II: Geodesics: Covariant Differentiation.- § 1. The differential equations satisfied by the geodesics.- § 2. The explicit expression for the second derivatives in the differential equations of the geodesies.- § 3. The differential of a vector.- § 4. Partial differentiation of vectors.- § 5. Elementary properties of ?-differentiation.- III: The “Euclidean Connection” of E. Cartan.- § 1. The fundamental postulates of Cartan.- § 2. Properties of the covariant derivative.- § 3. The general geometry of paths: the connection of Berwald.- § 4. Further connections arising from the general geometry of paths.- § 5. The osculating Riemannian space.- § 6. Normal coordinates.- IV: The Theory of Curvature.- § 1. The commutation formulae.- § 2. Identities satisfied by the curvature tensors.- § 3. The Bianchi identities.- §4. Geodesic deviation Ill.- § 5. The first and second variations of the length integral.- § 6. The curvature tensors arising from Berwald’s connection.- § 7. Spaces of constant curvature.- § 8. The projective curvature tensors.- V: The Theory of Subspaces.- § 1. The theory of curves.- § 2. The projection factors.- § 3. The induced connection parameters.;.- § 4. Fundamental aspects of the theory of subspaces based on the euclidean connection.- § 5. The Lie derivative and its application to the theory of subspaces.- § 6. Surfaces imbedded in anF3.- § 7. Fundamental aspects of the theory of subspaces from the point of view of the locally Minkowskian metric.- § 8. The differential geometry of the indicatrix and the geometrical significance of the tensor Sijhk.- § 9. Comparison between the induced and the intrinsic connection parameters.- VI: Miscellaneous Topics.- § 1. Groups of motions.- § 2. Conformai geometry.- § 3. The equivalence problem.- § 4. The theory of non-linear connections.- § 5. The local imbedding theories.- § 6. Two-dimensional Finsler spaces.- Appendix: Bibliographical references to related topics.- Symbols.