The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis: Classics in Mathematics
Autor Lars Hörmanderen Limba Engleză Paperback – 7 iul 2003
Din seria Classics in Mathematics
-
Preț: 406.82 lei -
Preț: 485.37 lei -
Preț: 406.04 lei -
Preț: 422.13 lei -
Preț: 415.13 lei -
Preț: 409.58 lei -
Preț: 413.24 lei -
Preț: 405.66 lei -
Preț: 409.58 lei -
Preț: 405.14 lei -
Preț: 399.60 lei -
Preț: 466.54 lei -
Preț: 421.03 lei -
Preț: 427.52 lei -
Preț: 423.61 lei -
Preț: 426.95 lei -
Preț: 430.65 lei -
Preț: 421.40 lei -
Preț: 402.90 lei -
Preț: 420.10 lei -
Preț: 429.35 lei -
Preț: 414.20 lei -
Preț: 412.72 lei -
Preț: 415.13 lei -
Preț: 439.92 lei -
Preț: 413.62 lei -
Preț: 402.16 lei -
Preț: 411.79 lei -
Preț: 420.83 lei -
Preț: 409.58 lei -
Preț: 421.56 lei -
Preț: 414.20 lei -
Preț: 442.15 lei -
Preț: 416.03 lei -
Preț: 413.24 lei -
Preț: 418.64 lei -
Preț: 414.40 lei -
Preț: 412.37 lei -
Preț: 420.47 lei -
Preț: 421.98 lei -
Preț: 427.52 lei -
Preț: 420.47 lei
Preț: 416.81 lei
Nou
Puncte Express: 625
Preț estimativ în valută:
73.74€ • 86.04$ • 64.47£
73.74€ • 86.04$ • 64.47£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540006626
ISBN-10: 3540006621
Pagini: 456
Ilustrații: XI, 440 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.7 kg
Ediția:2nd ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Classics in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540006621
Pagini: 456
Ilustrații: XI, 440 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.7 kg
Ediția:2nd ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Classics in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Test Functions.- Summary.- 1.1. A review of Differential Calculus.- 1.2. Existence of Test Functions.- 1.3. Convolution.- 1.4. Cutoff Functions and Partitions of Unity.- Notes.- II. Definition and Basic Properties of Distributions.- Summary.- 2.1. Basic Definitions.- 2.2. Localization.- 2.3. Distributions with Compact Support.- Notes.- III. Differentiation and Multiplication by Functions.- Summary.- 3.1. Definition and Examples.- 3.2. Homogeneous Distributions.- 3.3. Some Fundamental Solutions.- 3.4. Evaluation of Some Integrals.- Notes.- IV. Convolution.- Summary.- 4.1. Convolution with a Smooth Function.- 4.2. Convolution of Distributions.- 4.3. The Theorem of Supports.- 4.4. The Role of Fundamental Solutions.- 4.5. Basic Lp Estimates for Convolutions.- Notes.- V. Distributions in Product Spaces.- Summary.- 5.1. Tensor Products.- 5.2. The Kernel Theorem.- Notes.- VI. Composition with Smooth Maps.- Summary.- 6.1. Definitions.- 6.2. Some Fundamental Solutions.- 6.3. Distributions ona Manifold.- 6.4. The Tangent and Cotangent Bundles.- Notes.- VII. The Fourier Transformation.- Summary.- 7.1. The Fourier Transformation in ? and in ?’.- 7.2. Poisson’s Summation Formula and Periodic Distributions.- 7.3. The Fourier-Laplace Transformation in ?’.- 7.4. More General Fourier-Laplace Transforms.- 7.5. The Malgrange Preparation Theorem.- 7.6. Fourier Transforms of Gaussian Functions.- 7.7. The Method of Stationary Phase.- 7.8. Oscillatory Integrals.- 7.9. H(s), Lp and Hölder Estimates.- Notes.- VIII. Spectral Analysis of Singularities.- Summary.- 8.1. The Wave Front Set.- 8.2. A Review of Operations with Distributions.- 8.3. The Wave Front Set of Solutions of Partial Differential Equations.- 8.4. The Wave Front Set with Respect to CL.- 8.5. Rules of Computation for WFL.- 8.6. WFL for Solutions of Partial Differential Equations.- 8.7. Microhyperbolicity.- Notes.- IX. Hyperfunctions.- Summary.- 9.1. Analytic Functionals.- 9.2. General Hyperfunctions.- 9.3. The Analytic WaveFront Set of a Hyperfunction.- 9.4. The Analytic Cauchy Problem.- 9.5. Hyperfunction Solutions of Partial Differential Equations.- 9.6. The Analytic Wave Front Set and the Support.- Notes.- Exercises.- Answers and Hints to All the Exercises.- Index of Notation.