MultiMedia Modeling: 30th International Conference, MMM 2024, Amsterdam, The Netherlands, January 29 – February 2, 2024, Proceedings, Part II: Lecture Notes in Computer Science, cartea 14555
Editat de Stevan Rudinac, Alan Hanjalic, Cynthia Liem, Marcel Worring, Björn Þór Jónsson, Bei Liu, Yoko Yamakataen Limba Engleză Paperback – 28 ian 2024
The 112 full papers included in this volume were carefully reviewed and selected from 297 submissions. The MMM conference were organized in topics related to multimedia modelling, particularly: audio, image, video processing, coding and compression; multimodal analysis for retrieval applications, and multimedia fusion methods.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (5) | 396.09 lei 6-8 săpt. | |
| Springer Nature Switzerland – 15 apr 2024 | 396.09 lei 6-8 săpt. | |
| Springer Nature Switzerland – 29 ian 2024 | 490.30 lei 6-8 săpt. | |
| Springer Nature Switzerland – 28 ian 2024 | 521.93 lei 6-8 săpt. | |
| Springer Nature Switzerland – 28 ian 2024 | 577.40 lei 6-8 săpt. | |
| Springer Nature Switzerland – 28 ian 2024 | 578.20 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 461.83 lei - 20%
Preț: 461.57 lei - 20%
Preț: 424.26 lei - 20%
Preț: 390.69 lei - 20%
Preț: 498.50 lei - 15%
Preț: 388.50 lei - 20%
Preț: 390.35 lei - 20%
Preț: 460.98 lei - 20%
Preț: 461.52 lei - 20%
Preț: 497.55 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.83 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 391.14 lei - 20%
Preț: 389.85 lei - 20%
Preț: 461.32 lei - 20%
Preț: 498.32 lei - 20%
Preț: 496.64 lei - 20%
Preț: 532.28 lei - 20%
Preț: 527.36 lei - 20%
Preț: 498.46 lei - 15%
Preț: 461.85 lei - 20%
Preț: 390.12 lei - 20%
Preț: 532.41 lei - 20%
Preț: 462.24 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 252.15 lei - 20%
Preț: 390.94 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.86 lei - 20%
Preț: 532.54 lei - 20%
Preț: 462.67 lei - 20%
Preț: 461.65 lei - 20%
Preț: 639.72 lei - 20%
Preț: 255.91 lei - 15%
Preț: 535.92 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 499.36 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.20 lei - 20%
Preț: 249.95 lei
Preț: 577.40 lei
Preț vechi: 721.74 lei
-20% Nou
Puncte Express: 866
Preț estimativ în valută:
102.17€ • 119.81$ • 89.73£
102.17€ • 119.81$ • 89.73£
Carte tipărită la comandă
Livrare economică 30 ianuarie-13 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031533075
ISBN-10: 3031533070
Pagini: 522
Ilustrații: XVIII, 522 p. 193 illus., 185 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.75 kg
Ediția:1st ed. 2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031533070
Pagini: 522
Ilustrații: XVIII, 522 p. 193 illus., 185 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.75 kg
Ediția:1st ed. 2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Self-distillation Enhanced Vertical Wavelet Spatial Attention for Person Re-identification.- High Capacity Reversible Data Hiding in Encrypted Images Based on
Pixel Value Preprocessing and Block Classification.- HPattack: An Effective Adversarial Attack for Human Parsing.- Dynamic-Static Graph Convolutional Network for Video-Based Facial Expression Recognition.- Hierarchical Supervised Contrastive Learning for Multimodal Sentiment Analysis.- Semantic Importance-Based Deep Image Compression Using A Generative Approach.- Drive-CLIP: Cross-modal Contrastive Safety-Critical Driving Scenario Representation Learning and Zero-shot Driving Risk Analysis.- MRHF: Multi-stage Retrieval and Hierarchical Fusion for Textbook Question Answering.- Multi-scale Decomposition Dehazing with Polarimetric Vision.- CLF-Net: A Few-shot Cross-Language Font Generation Method.- Multi-dimensional Fusion and Consistency for Semi-supervised Medical Image Segmentation.- Audio-Visual Segmentation By Leveraging Multi-Scaled Features Learning.- Multi-head Hashing with Orthogonal Decomposition for Cross-modal Retrieval.- Fusion Boundary and Gradient Enhancement Network for Camouflage Object Detection.- Find the Cliffhanger: Multi-Modal Trailerness in Soap Operas.- SM-GAN: Single-stage and Multi-object Text Guided Image Editing.- MAVAR-SE: Multi-scale Audio-Visual Association Representation Network for End-to-end Speaker Extraction.- NearbyPatchCL: Leveraging Nearby Patches for Self-Supervised Patch-Level Multi-Class Classification in Whole-Slide Images.- Improving Small License Plate Detection with Bidirectional Vehicle-plate Relation.- A Purified Stacking Ensemble Framework for Cytology Classification.- SEAS-Net: Segment Exchange Augmentation for Semi-Supervised Brain Tumor Segmentation.- Super-Resolution-Assisted Feature Refined Extraction for Small Objects in Remote Sensing Images.- Lightweight Image Captioning Model Based on Knowledge Distillation.- Irregular License Plate Recognition via Global Information Integration.- TNT-Net: Point Cloud Completion by Transformer in Transformer.- Fourier Transformer for Joint Super-Resolution and Reconstruction of
Mr Image.- MVD-NeRF: Resolving Shape-Radiance Ambiguity via Mitigating View Dependency.- DPM-Det: Diffusion Model Object Detection Based on DPM-Solver++
Guided Sampling.- CT-MVSNet: Efficient Multi-View Stereo with Cross-scale Transformer.- A Coarse and Fine Grained Masking Approach for Video-grounded
Dialogue.- Deep self-supervised subspace clustering with triple loss.- LigCDnet:Remote Sensing Image Cloud Detection Based on Lightweight Framework.- Gait Recognition Based on Temporal Gait Information Enhancing.- Learning Complementary Instance Representation with Parallel Adaptive Graph-Based Network for Action Detection.- CESegNet:Context-Enhancement Semantic Segmentation Network
Based on Transformer.- MoCap-Video Data Retrieval with Deep Cross-Modal Learning.- LRATNet: Local-Relationship-Aware Transformer Network for Table
Structure Recognition.