MultiMedia Modeling: 30th International Conference, MMM 2024, Amsterdam, The Netherlands, January 29 – February 2, 2024, Proceedings, Part I: Lecture Notes in Computer Science, cartea 14554
Editat de Stevan Rudinac, Alan Hanjalic, Cynthia Liem, Marcel Worring, Björn Þór Jónsson, Bei Liu, Yoko Yamakataen Limba Engleză Paperback – 28 ian 2024
The 112 full papers included in this volume were carefully reviewed and selected from 297 submissions. The MMM conference were organized in topics related to multimedia modelling, particularly: audio, image, video processing, coding and compression; multimodal analysis for retrieval applications, and multimedia fusion methods.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (5) | 396.09 lei 6-8 săpt. | |
| Springer Nature Switzerland – 15 apr 2024 | 396.09 lei 6-8 săpt. | |
| Springer Nature Switzerland – 29 ian 2024 | 490.30 lei 6-8 săpt. | |
| Springer Nature Switzerland – 28 ian 2024 | 521.93 lei 6-8 săpt. | |
| Springer Nature Switzerland – 28 ian 2024 | 577.40 lei 6-8 săpt. | |
| Springer Nature Switzerland – 28 ian 2024 | 578.20 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 461.83 lei - 20%
Preț: 461.57 lei - 20%
Preț: 424.26 lei - 20%
Preț: 390.69 lei - 20%
Preț: 498.50 lei - 15%
Preț: 388.50 lei - 20%
Preț: 390.35 lei - 20%
Preț: 460.98 lei - 20%
Preț: 461.52 lei - 20%
Preț: 497.55 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.83 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 391.14 lei - 20%
Preț: 389.85 lei - 20%
Preț: 461.32 lei - 20%
Preț: 498.32 lei - 20%
Preț: 496.64 lei - 20%
Preț: 532.28 lei - 20%
Preț: 527.36 lei - 20%
Preț: 498.46 lei - 15%
Preț: 461.85 lei - 20%
Preț: 390.12 lei - 20%
Preț: 532.41 lei - 20%
Preț: 462.24 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 252.15 lei - 20%
Preț: 390.94 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.86 lei - 20%
Preț: 532.54 lei - 20%
Preț: 462.67 lei - 20%
Preț: 461.65 lei - 20%
Preț: 639.72 lei - 20%
Preț: 255.91 lei - 15%
Preț: 535.92 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 499.36 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.20 lei - 20%
Preț: 249.95 lei
Preț: 521.93 lei
Preț vechi: 652.41 lei
-20% Nou
Puncte Express: 783
Preț estimativ în valută:
92.36€ • 108.30$ • 81.11£
92.36€ • 108.30$ • 81.11£
Carte tipărită la comandă
Livrare economică 31 ianuarie-14 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031533044
ISBN-10: 3031533046
Pagini: 505
Ilustrații: XVIII, 505 p. 182 illus., 171 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.73 kg
Ediția:1st ed. 2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031533046
Pagini: 505
Ilustrații: XVIII, 505 p. 182 illus., 171 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.73 kg
Ediția:1st ed. 2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Where are Biases? Adversarial Debiasing with Spurious Feature Visualization.- Cross-Modal Hash Retrieval with Category Semantics.- Spatiotemporal Representation Enhanced ViT for Video Recognition.- SCFormer: A Vision Transformer with Split Channel in Sitting Posture Recognition.- Dive into Coarse-to-Fine Strategy in Single Image Deblurring.- TICondition: Expanding Control Capabilities for Text-to-Image Generation with Multi-Modal Conditions.- Enhancing Generative Generalized Zero Shot Learning via Multi-Space Constraints and Adapative Integration.- Joint Image Data Hiding and Rate-Distortion Optimization in Neural Compressed Latent Representations.- GSUNet: A Brain Tumor Segmentation Method Based On 3D Ghost Shuffle U-Net.- ACT: Action-associated and Target-related Representations for Object Navigation.- Foreground Feature Enhancement and Peak & Background Suppression for Fine-Grained Visual Classification.- YOLOv5-SRR: Enhancing YOLOv5 for Effective Underwater Target Detection.- Image Clustering and Generation with HDGMVAE-I.- “Car or Bus?" CLearSeg: CLIP-enhanced Discrimination among Resembling Classes for Few-Shot Semantic Segmentation.- PANDA: Prompt-based Context- and Indoor-aware Pretraining for Vision and Language Navigation.- Cross-Modal Semantic Alignment Learning for Text-based Person Search.- Point Cloud Classification via Learnable Memory Bank.- Adversarially Regularized Low-Light Image Enhancement.- Advancing Incremental Few-shot Semantic Segmentation via Semantic-guided Relation Alignment and Adaptation.- PMGCN:Preserving measuring mapping prototype graph calibration network for few-shot learning.- ARE-CAM: An interpretable approach to quantitatively evaluating the adversarial robustness of deep models based on CAM.- SSK-Yolo:Global feature-driven small object detection network for images.- MetaVSR: A Novel Approach to Video Super-Resolution for Arbitrary Magnification.- From Skulls to Faces: A Deep Generative Framework for Realistic 3D Craniofacial Reconstruction.- Structure-aware Adaptive Hybrid Interaction Modeling for Image-Text Matching.- Using Saliency and Cropping to Improve Video Memorability.- Contextual Augmentation with Bias Adaptive for Few-shot Video
Object Segmentation.- A lightweight local attention network for image super resolution.- Domain Adaptation for Speaker Verification Based on Self-Supervised
Learning with Adversarial Training.- Quality Scalable Video Coding based on Neural Representation.- Hierarchical Bi-Directional Temporal Context Mining for Improved
Video Compression.- MAMixer: Multivariate Time Series Forecasting via Multi-Axis Mixing.- A Custom GAN-based Robust Algorithm for Medical Image Watermarking.- A Detail-guided Multi-source Fusion Network for Remote Sensing Object Detection.- A Secure and Fair Federated Learning Protocol under the Universal Composability Framework.- Bi-directional Interaction and Dense Aggregation Network for RGB-D Salient Object Detection.- Face Forgery Detection via Texture and Saliency Enhancement.