Introduction to Analytic Number Theory: Grundlehren der mathematischen Wissenschaften, cartea 148
Autor Komaravolu Chandrasekharanen Limba Engleză Paperback – mar 2012
Din seria Grundlehren der mathematischen Wissenschaften
- 17%
Preț: 539.72 lei - 18%
Preț: 867.65 lei -
Preț: 641.48 lei -
Preț: 371.84 lei - 18%
Preț: 747.16 lei -
Preț: 417.52 lei - 24%
Preț: 685.05 lei - 15%
Preț: 573.68 lei - 15%
Preț: 455.01 lei - 24%
Preț: 654.97 lei -
Preț: 403.27 lei - 15%
Preț: 435.43 lei -
Preț: 343.01 lei -
Preț: 465.91 lei -
Preț: 406.97 lei - 15%
Preț: 427.26 lei - 15%
Preț: 507.50 lei - 15%
Preț: 566.94 lei -
Preț: 340.03 lei - 18%
Preț: 699.51 lei -
Preț: 373.24 lei - 15%
Preț: 437.32 lei - 15%
Preț: 462.55 lei -
Preț: 446.83 lei -
Preț: 348.34 lei -
Preț: 469.46 lei - 15%
Preț: 430.41 lei -
Preț: 403.83 lei - 18%
Preț: 709.63 lei -
Preț: 373.76 lei -
Preț: 403.27 lei - 15%
Preț: 558.62 lei -
Preț: 478.73 lei -
Preț: 346.88 lei -
Preț: 373.03 lei -
Preț: 403.83 lei -
Preț: 436.47 lei -
Preț: 371.73 lei -
Preț: 345.94 lei -
Preț: 483.84 lei -
Preț: 413.24 lei -
Preț: 376.01 lei -
Preț: 380.09 lei - 15%
Preț: 569.29 lei
Preț: 692.22 lei
Preț vechi: 844.17 lei
-18% Nou
Puncte Express: 1038
Preț estimativ în valută:
122.49€ • 142.85$ • 107.55£
122.49€ • 142.85$ • 107.55£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642461262
ISBN-10: 3642461263
Pagini: 152
Ilustrații: VIII, 144 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.23 kg
Ediția:Softcover reprint of the original 1st ed. 1968
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642461263
Pagini: 152
Ilustrații: VIII, 144 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.23 kg
Ediția:Softcover reprint of the original 1st ed. 1968
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I The unique factorization theorem.- § 1. Primes.- § 2. The unique factorization theorem.- § 3. A second proof of Theorem 2.- §4. Greatest common divisor and least common multiple.- § 5. Farey sequences.- § 6. The infinitude of primes.- II Congruences.- § 1. Residue classes.- § 2. Theorems of Euler and of Fermat.- § 3. The number of solutions of a congruence.- III Rational approximation of irrationals and Hurwitz’s theorem.- § 1. Approximation of irrationals.- § 2. Sums of two squares.- § 3. Primes of the form 4k±.- §4. Hurwitz’s theorem.- IV Quadratic residues and the representation of a number as a sum of four squares.- § 1. The Legendre symbol.- § 2. Wilson’s theorem and Euler’s criterion.- § 3. Sums of two squares.- § 4. Sums of four squares.- V The law of quadratic reciprocity.- § 1. Quadratic reciprocity.- § 2. Reciprocity for generalized Gaussian sums.- § 3. Proof of quadratic reciprocity.- § 4. Some applications.- VI Arithmetical functions and lattice points.- § 1. Generalities.- § 2. The lattice point function r(n).- § 3. The divisor function d(n).- § 4. The functions ?(n).- § 5. The Möbius functions ?(n).- § 6. Euler’s function ?(n).- VII Chebyshev’s therorem on the distribution of prime numbers.- § 1. The Chebyshev functions.- § 2. Chebyshev’s theorem.- § 3. Bertrand’s postulate.- § 4. Euler’s identity.- § 5. Some formulae of Mertens.- VIII Weyl’s theorems on uniforms distribution and Kronecker’s theorem.- § 1. Introduction.- § 2. Uniform distribution in the unit interval.- § 3. Uniform distribution modulo 1.- § 4. Weyl’s theorems.- § 5. Kronecker’s theorem.- IX Minkowski’s theorem on lattice points in convex sets.- § 1. Convex sets.- § 2. Minkowski’s theorem.- § 3. Applications.- XDirichlet’s theorem on primes in an arithmetical progression.- § 1. Introduction.- § 2. Characters.- § 3. Sums of characters, orthogonality relations.- § 4. Dirichlet series, Landau’s theorem.- § 5. Dirichlet’s theorem.- XI The prime number theorem.- § 1. The non-vanishing of ? (1 + it).- § 2. The Wiener-Ikehara theorem.- § 3. The prime number theorem.- A list of books.- Notes.