Algebra: Undergraduate Texts in Mathematics
Autor L.E. Sigleren Limba Engleză Paperback – 14 dec 2011
Din seria Undergraduate Texts in Mathematics
-
Preț: 418.35 lei -
Preț: 409.58 lei -
Preț: 384.23 lei -
Preț: 387.19 lei - 15%
Preț: 395.77 lei -
Preț: 386.76 lei -
Preț: 376.75 lei -
Preț: 458.27 lei -
Preț: 372.67 lei -
Preț: 407.65 lei - 15%
Preț: 476.79 lei - 15%
Preț: 454.69 lei - 15%
Preț: 469.72 lei -
Preț: 375.27 lei -
Preț: 390.54 lei - 15%
Preț: 494.55 lei - 15%
Preț: 430.20 lei -
Preț: 446.10 lei -
Preț: 381.55 lei -
Preț: 385.17 lei -
Preț: 407.34 lei - 15%
Preț: 501.94 lei -
Preț: 439.45 lei - 19%
Preț: 521.88 lei - 15%
Preț: 511.29 lei -
Preț: 372.41 lei - 15%
Preț: 462.25 lei -
Preț: 386.74 lei - 15%
Preț: 526.28 lei - 15%
Preț: 444.21 lei - 17%
Preț: 386.69 lei -
Preț: 470.62 lei - 15%
Preț: 517.73 lei -
Preț: 371.20 lei -
Preț: 396.50 lei - 15%
Preț: 468.16 lei -
Preț: 471.98 lei - 17%
Preț: 335.06 lei - 15%
Preț: 570.10 lei - 8%
Preț: 410.50 lei - 15%
Preț: 428.79 lei - 11%
Preț: 338.19 lei - 15%
Preț: 433.19 lei - 15%
Preț: 511.16 lei -
Preț: 446.76 lei -
Preț: 481.87 lei -
Preț: 375.27 lei -
Preț: 470.88 lei -
Preț: 381.19 lei
Preț: 380.99 lei
Puncte Express: 571
Preț estimativ în valută:
67.38€ • 79.58$ • 58.05£
67.38€ • 79.58$ • 58.05£
Carte tipărită la comandă
Livrare economică 20 martie-03 aprilie
Specificații
ISBN-13: 9781461394129
ISBN-10: 1461394120
Pagini: 432
Ilustrații: 419 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.6 kg
Ediția:Softcover reprint of the original 1st ed. 1976
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461394120
Pagini: 432
Ilustrații: 419 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.6 kg
Ediția:Softcover reprint of the original 1st ed. 1976
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1 Set theory.- 1.1 Sets.- 1.2 Operations on sets.- 1.3 Relations.- 1.4 Quotient sets.- 1.5 Functions.- 1.6 Composition of functions.- 1.7 A factorization of a function.- 1.8 The symmetric group.- 2 Rings: Basic theory.- 2.1 Binary operations.- 2.2 The ring.- 2.3 Special rings.- 2.4 Subrings.- 2.5 Morphisms.- 2.6 Quotient rings.- 2.7 Morphisms and quotient rings.- 2.8 Ideals.- 3 Rings: Natural numbers and integers.- 3.1 The Peano axioms.- 3.2 Addition of natural numbers.- 3.3 Multiplication of natural numbers.- 3.4 Further properties of.- 3.5 Construction of the integers.- 3.6 Embedding ? in the integers.- 3.7 Ordered integral domains.- 3.8 A characterization of the integers.- 4 Rings: Applications of the integers.- 4.1 Finite sets.- 4.2 Generalized associative, commutative, and distributive theorems.- 4.3 The division algorithm for the integers.- 4.4 Multiples and exponents in a ring.- 4.5 The field of fractions.- 4.6 Characteristic of a ring.- 5 Rings: Polynomials and factorization.- 5.1 The ring of polynomials.- 5.2 A formal definition of a polynomial ring.- 5.3 Polynomial functions.- 5.4 Euclidean and principal ideal domains.- 5.5 Factorization in principal ideal domains.- 5.6 Greatest common divisor.- 5.7 Unique factorization domains.- 5.8 Field extensions and complex numbers.- 6 Linear algebra: Modules.- 6.1 Function spaces, modules, and vector spaces.- 6.2 Submodules.- Appendix 6A A method for solution of linear equations.- 6.3 Quotient modules.- 6.4 Morphisms.- 6.5 Products and direct sums.- 6.6 Families and matrices.- 6.7 Bases.- 6.8 The coordinate morphism.- 6.9 Morphisms and bases, kernel, and range.- 6.10 Vector spaces.- Appendix 6B The existence of a basis for a vector space.- Appendix 6C Equicardinality of infinite bases of a vector space.- Appendix 6DDimension of a module over a commutative unitary ring.- 7 Linear algebra: The module of morphisms.- 7.1 ?(M, M?), the module of morphisms.- 7.2 Composition of morphisms, the endomorphism algebra ?(M).- 7.3 Matrix calculation of morphisms.- 7.4 Change of basis.- 7.5 The dual space.- 7.6 Linear equations.- 7.7 Determinants.- 8 Abstract systems.- 8.1 Algebraic systems.- 8.2 Algebraic subsystems.- 8.3 Morphisms.- 8.4 Congruences and quotient systems.- 8.5 Products and sums.- 9 Monoids and groups.- 9.1 Monoids, unitary monoids, cancellative monoids, and groups.- 9.2 Congruences and quotient systems.- 9.3 Morphisms.- 9.4 Cyclic groups and order.- 9.5 Products.- 10 Linear algebra: Modules over principal domains and similarity.- 10.1 Cyclic modules.- 10.2 Invariant factors.- 10.3 Linear equations in a principal domain.- 10.4 A direct sum resolution of a finitely generated module.- 10.5 Similarity and canonical forms.- 10.6 The characteristic polynomial and characteristic values.- Selected references.- Answers to questions.- Index of symbols.