A First Course in Real Analysis: Undergraduate Texts in Mathematics
Autor Sterling K. Berberianen Limba Engleză Hardback – 24 iun 1994
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 371.20 lei 43-57 zile | |
| Springer – 7 sep 2012 | 371.20 lei 43-57 zile | |
| Hardback (1) | 376.75 lei 43-57 zile | |
| Springer – 24 iun 1994 | 376.75 lei 43-57 zile |
Din seria Undergraduate Texts in Mathematics
- 15%
Preț: 494.55 lei - 17%
Preț: 395.44 lei -
Preț: 458.95 lei - 15%
Preț: 396.08 lei -
Preț: 439.45 lei - 15%
Preț: 395.48 lei - 17%
Preț: 392.45 lei -
Preț: 420.68 lei -
Preț: 306.45 lei - 17%
Preț: 426.71 lei - 17%
Preț: 387.00 lei -
Preț: 427.55 lei -
Preț: 373.98 lei -
Preț: 417.34 lei - 17%
Preț: 391.86 lei -
Preț: 372.67 lei -
Preț: 387.48 lei -
Preț: 409.58 lei - 15%
Preț: 394.77 lei - 15%
Preț: 452.05 lei -
Preț: 387.05 lei -
Preț: 396.81 lei -
Preț: 371.58 lei - 15%
Preț: 427.08 lei -
Preț: 393.40 lei -
Preț: 448.76 lei -
Preț: 418.67 lei -
Preț: 419.86 lei - 15%
Preț: 429.75 lei -
Preț: 297.41 lei -
Preț: 295.50 lei -
Preț: 421.63 lei -
Preț: 388.98 lei -
Preț: 381.19 lei -
Preț: 375.27 lei - 15%
Preț: 501.01 lei -
Preț: 386.74 lei - 15%
Preț: 511.29 lei - 15%
Preț: 430.65 lei -
Preț: 375.27 lei - 15%
Preț: 444.21 lei - 15%
Preț: 553.26 lei - 15%
Preț: 433.19 lei -
Preț: 390.54 lei -
Preț: 470.62 lei - 15%
Preț: 517.73 lei -
Preț: 371.20 lei
Preț: 376.75 lei
Nou
Puncte Express: 565
Preț estimativ în valută:
66.66€ • 77.66$ • 58.21£
66.66€ • 77.66$ • 58.21£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387942179
ISBN-10: 0387942173
Pagini: 240
Ilustrații: XI, 240 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.5 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387942173
Pagini: 240
Ilustrații: XI, 240 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.5 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1 Axioms for the Field ? of Real Numbers.- §1.1. The field axioms.- §1.2. The order axioms.- §1.3. Bounded sets, LUB and GLB.- §1.4. The completeness axiom (existence of LUB’s).- 2 First Properties of ?.- §2.1. Dual of the completeness axiom (existence of GLB’s).- §2.2. Archimedean property.- §2.3. Bracket function.- §2.4. Density of the rationals.- §2.5. Monotone sequences.- §2.6. Theorem on nested intervals.- §2.7. Dedekind cut property.- §2.8. Square roots.- §2.9. Absolute value.- 3 Sequences of Real Numbers, Convergence.- §3.1. Bounded sequences.- §3.2. Ultimately, frequently.- §3.3. Null sequences.- §3.4. Convergent sequences.- §3.5. Subsequences, Weierstrass-Bolzano theorem.- §3.6. Cauchy’s criterion for convergence.- §3.7. limsup and liminf of a bounded sequence.- 4 Special Subsets of ?.- §4.1. Intervals.- §4.2. Closed sets.- §4.3. Open sets, neighborhoods.- §4.4. Finite and infinite sets.- §4.5. Heine-Borel covering theorem.- 5 Continuity.- §5.1. Functions, direct images, inverse images.- §5.2. Continuity at a point.- §5.3. Algebra of continuity.- §5.4. Continuous functions.- §5.5. One-sided continuity.- §5.6. Composition.- 6 Continuous Functions on an Interval.- §6.1. Intermediate value theorem.- §6.2. n’th roots.- §6.3. Continuous functions on a closed interval.- §6.4. Monotonic continuous functions.- §6.5. Inverse function theorem.- §6.6. Uniform continuity.- 7 Limits of Functions.- §7.1. Deleted neighborhoods.- §7.2. Limits.- §7.3. Limits and continuity.- §7.4. ?,?characterization of limits.- §7.5. Algebra of limits.- 8 Derivatives.- §8.1. Differentiability.- §8.2. Algebra of derivatives.- §8.3. Composition (Chain Rule).- §8.4. Local max and min.- §8.5. Mean value theorem.- 9 Riemann Integral.- §9.1. Upper and lower integrals: the machinery.- §9.2. First properties of upper and lower integrals.- §9.3. Indefinite upper and lower integrals.- §9.4. Riemann-integrable functions.- §9.5. An application: log and exp.- §9.6. Piecewise pleasant functions.- §9.7.Darboux’s theorem.- §9.8. The integral as a limit of Riemann sums.- 10 Infinite Series.- §10.1. Infinite series: convergence, divergence.- §10.2. Algebra of convergence.- §10.3. Positive-term series.- §10.4. Absolute convergence.- 11 Beyond the Riemann Integral.- §11.1 Negligible sets.- §11.2 Absolutely continuous functions.- §11.3 The uniqueness theorem.- §11.4 Lebesgue’s criterion for Riemann-integrability.- §11.5 Lebesgue-integrable functions.- §A.1 Proofs, logical shorthand.- §A.2 Set notations.- §A.3 Functions.- §A.4 Integers.- Index of Notations.