Elliptic Modular Functions: An Introduction: Grundlehren der mathematischen Wissenschaften, cartea 203
Autor B. Schoeneberg Traducere de J.R. Smart, E. A. Schwandten Limba Engleză Paperback – 21 dec 2011
Din seria Grundlehren der mathematischen Wissenschaften
- 24%
Preț: 654.97 lei - 17%
Preț: 539.72 lei - 18%
Preț: 867.65 lei -
Preț: 641.48 lei -
Preț: 371.84 lei - 18%
Preț: 747.16 lei -
Preț: 417.52 lei - 24%
Preț: 685.05 lei - 15%
Preț: 573.68 lei - 24%
Preț: 828.39 lei - 18%
Preț: 874.17 lei - 18%
Preț: 875.70 lei - 15%
Preț: 455.01 lei - 15%
Preț: 688.12 lei - 24%
Preț: 1208.66 lei - 20%
Preț: 615.40 lei - 15%
Preț: 435.43 lei -
Preț: 343.01 lei -
Preț: 403.27 lei -
Preț: 465.91 lei -
Preț: 406.97 lei - 15%
Preț: 427.26 lei - 15%
Preț: 507.50 lei - 15%
Preț: 566.94 lei -
Preț: 340.03 lei - 18%
Preț: 699.51 lei -
Preț: 373.24 lei - 15%
Preț: 437.32 lei - 15%
Preț: 462.55 lei -
Preț: 446.83 lei -
Preț: 348.34 lei -
Preț: 469.46 lei - 15%
Preț: 430.41 lei -
Preț: 403.83 lei - 18%
Preț: 709.63 lei -
Preț: 373.76 lei -
Preț: 403.27 lei - 15%
Preț: 558.62 lei -
Preț: 478.73 lei -
Preț: 346.88 lei -
Preț: 373.03 lei -
Preț: 403.83 lei -
Preț: 436.47 lei
Preț: 748.32 lei
Preț vechi: 912.59 lei
-18% Nou
Puncte Express: 1122
Preț estimativ în valută:
132.42€ • 155.28$ • 116.29£
132.42€ • 155.28$ • 116.29£
Carte tipărită la comandă
Livrare economică 16 februarie-02 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642656651
ISBN-10: 364265665X
Pagini: 252
Ilustrații: VIII, 236 p.
Dimensiuni: 152 x 229 x 13 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1974
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 364265665X
Pagini: 252
Ilustrații: VIII, 236 p.
Dimensiuni: 152 x 229 x 13 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1974
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. The Modular Group.- § 1. Inhomogeneous Linear Transformations.- § 2. Homogeneous Linear Transformations.- § 3. The Modular Group. Fixed Points.- § 4. Generators and Relations.- § 5. Fundamental Region.- II. The Modular Functions of Level One.- § 1. Definition and Properties of Modular Functions.- § 2. Extension of the Modular Group by Reflections.- § 3. Existence of Modular Functions. The Absolute Modular Invariant J.- § 4. Modular Form.- § 5. Entire Modular Forms.- III. Eisenstein Series.- § 1. The Eisenstein Series in the Case of Absolute Convergence.- § 2. The Eisenstein Series in the Case of Conditional Convergence.- § 3. The Discriminant ?.- IV. Subgroups of the Modular Group.- § 1. Subgroups of the Modular Group.- § 2. The Principal Congruence Groups.- § 3. Congruence Groups.- § 4. Fundamental Region.- § 5. Fundamental Regions for Special Subgroups.- § 6. The Quotient Space ?*/?1.- § 7. Genus of the Fundamental Region.- § 8. The Genus of the Fundamental Region of ?0(N).- V. Function Theory for the Subgroups of Finite Index in the Modular Group.- § 1. Functions for Subgroups.- § 2. Modular Forms for Subgroups.- § 3. Modular Forms of Dimension ?2 and Integrals.- § 4. The Riemann-Roch Theorem and Applications.- VI. Fields of Modular Functions.- § 1. Algebraic Field Extensions of ?(J).- § 2. The Fields ?$$\left( {\sqrt {J - 1} } \right)$$ and ?$$\left( {{}^3\sqrt J } \right)$$.- § 3. Transformation Groups of Order n.- § 4. Transformation Fields of Order n.- § 5. The Modular Equation of Order n.- § 6. The Galois Group of the Modular Equation.- § 7. Transformations of Order n for Modular Forms.- VII. Eisenstein Series of Higher Level.- § 1. The Series in the Case of Absolute Convergence.- § 2. The Series of Dimension?1 and ?2.- § 3. Properties of the Series of Dimension ?1 and ?2. Applications.- § 4. Division Equation.- VIII. The Integrals of ?-Division Values.- § 1. The Space of ?-Division Values. Integrals.- § 2. An Asymptotic Formula and the Behavior of the Integrals under the Transformation T.- § 3. A Second Look at the Behavior of the Integrals under the Transformation T. The General Transformation Formula.- § 4. Consequences of the Transformation Formula.- IX. Theta Series.- § 1. General Theta Series. An Operator.- § 2. Special Theta Series.- § 3. Behavior of the Theta Series under Modular Transformations.- § 4. Behavior of the Theta Series under Congruence Groups. Gaussian Sums.- § 5. Examples and Applications.- Literature.- Index of Definitions.- Index of Notations.