Basic Theory of Ordinary Differential Equations: Universitext
Autor Po-Fang Hsieh, Yasutaka Sibuyaen Limba Engleză Hardback – 22 iun 1999
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 516.01 lei 6-8 săpt. | |
| Springer – 24 oct 2012 | 516.01 lei 6-8 săpt. | |
| Hardback (1) | 764.86 lei 6-8 săpt. | |
| Springer – 22 iun 1999 | 764.86 lei 6-8 săpt. |
Din seria Universitext
- 15%
Preț: 390.04 lei -
Preț: 454.23 lei -
Preț: 409.96 lei - 15%
Preț: 487.81 lei - 17%
Preț: 391.44 lei - 15%
Preț: 522.85 lei -
Preț: 349.10 lei - 15%
Preț: 392.21 lei - 15%
Preț: 426.68 lei -
Preț: 470.62 lei - 19%
Preț: 460.06 lei - 15%
Preț: 425.22 lei -
Preț: 399.23 lei - 15%
Preț: 532.05 lei -
Preț: 389.61 lei - 15%
Preț: 390.04 lei - 15%
Preț: 390.95 lei - 15%
Preț: 391.81 lei -
Preț: 385.01 lei -
Preț: 469.31 lei - 15%
Preț: 466.06 lei -
Preț: 417.96 lei - 15%
Preț: 460.67 lei - 19%
Preț: 451.23 lei -
Preț: 335.93 lei -
Preț: 442.01 lei - 17%
Preț: 462.80 lei - 15%
Preț: 572.89 lei -
Preț: 367.85 lei - 15%
Preț: 456.60 lei - 15%
Preț: 513.20 lei -
Preț: 374.91 lei - 15%
Preț: 476.97 lei - 15%
Preț: 451.40 lei -
Preț: 465.60 lei - 15%
Preț: 618.64 lei - 20%
Preț: 490.60 lei - 15%
Preț: 579.03 lei - 15%
Preț: 565.69 lei -
Preț: 471.15 lei -
Preț: 367.12 lei -
Preț: 475.01 lei -
Preț: 443.31 lei - 20%
Preț: 319.60 lei - 15%
Preț: 455.18 lei - 15%
Preț: 576.22 lei - 15%
Preț: 560.81 lei -
Preț: 398.86 lei - 15%
Preț: 627.01 lei
Preț: 764.86 lei
Preț vechi: 932.76 lei
-18% Nou
Puncte Express: 1147
Preț estimativ în valută:
135.37€ • 158.75$ • 118.69£
135.37€ • 158.75$ • 118.69£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387986999
ISBN-10: 0387986995
Pagini: 469
Ilustrații: XI, 469 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.84 kg
Ediția:1999
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
ISBN-10: 0387986995
Pagini: 469
Ilustrații: XI, 469 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.84 kg
Ediția:1999
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Fundamental Theorems of Ordinary Differential Equations.- I-1. Existence and uniqueness with the Lipschitz condition.- I-2. Existence without the Lipschitz condition.- I-3. Some global properties of solutions.- I-4. Analytic differential equations.- Exercises I.- II. Dependence on Data.- II-1. Continuity with respect to initial data and parameters.- II-2. Differentiability.- Exercises II.- III. Nonuniqueness.- III-l. Examples.- III-2. The Kneser theorem.- III-3. Solution curves on the boundary of R(A).- III-4. Maximal and minimal solutions.- III-5. A comparison theorem.- III-6. Sufficient conditions for uniqueness.- Exercises III.- IV. General Theory of Linear Systems.- IV-1. Some basic results concerning matrices.- IV-2. Homogeneous systems of linear differential equations.- IV-3. Homogeneous systems with constant coefficients.- IV-4. Systems with periodic coefficients.- IV-5. Linear Hamiltonian systems with periodic coefficients.- IV-6. Nonhomogeneous equations.- IV-7. Higher-order scalar equations.- Exercises IV.- V. Singularities of the First Kind.- V-1. Formal solutions of an algebraic differential equation.- V-2. Convergence of formal solutions of a system of the first kind.- V-3. TheS-Ndecomposition of a matrix of infinite order.- V-4. TheS-Ndecomposition of a differential operator.- V-5. A normal form of a differential operator.- V-6. Calculation of the normal form of a differential operator.- V-7. Classification of singularities of homogeneous linear systems.- Exercises V.- VI. Boundary-Value Problems of Linear Differential Equations of the Second-Order.- VI- 1. Zeros of solutions.- VI- 2. Sturm-Liouville problems.- VI- 3. Eigenvalue problems.- VI- 4. Eigenfunction expansions.- VI- 5. Jost solutions.- VI- 6. Scattering data.- VI- 7. Reflectionless potentials.- VI- 8. Construction of a potential for given data.- VI- 9. Differential equations satisfied by reflectionless potentials.- VI-10. Periodic potentials.- Exercises VI.- VII. Asymptotic Behavior of Solutions of Linear Systems.- VII-1. Liapounoff’s type numbers.- VII-2. Liapounoff’s type numbers of a homogeneous linear system.- VII-3. Calculation of Liapounoff’s type numbers of solutions.- VII-4. A diagonalization theorem.- VII-5. Systems with asymptotically constant coefficients.- VII-6. An application of the Floquet theorem.- Exercises VII.- VIII. Stability.- VIII- 1. Basic definitions.- VIII- 2. A sufficient condition for asymptotic stability.- VIII- 3. Stable manifolds.- VIII- 4. Analytic structure of stable manifolds.- VIII- 5. Two-dimensional linear systems with constant coefficients.- VIII- 6. Analytic systems in ?n.- VIII- 7. Perturbations of an improper node and a saddle point.- VIII- 8. Perturbations of a proper node.- VIII- 9. Perturbation of a spiral point.- VIII-10. Perturbation of a center.- Exercises VIII.- IX. Autonomous Systems.- IX-1. Limit-invariant sets.- IX-2. Liapounoff’s direct method.- IX-3. Orbital stability.- IX-4. The Poincaré-Bendixson theorem.- IX-5. Indices of Jordan curves.- Exercises IX.- X. The Second-Order Differential Equation$$\frac{{{d^2}x}}{{d{t^2}}} + h(x)\frac{{dx}}{{dt}} + g(x) = 0$$.- X-1. Two-point boundary-value problems.- X-2. Applications of the Liapounoff functions.- X-3. Existence and uniqueness of periodic orbits.- X-4. Multipliers of the periodic orbit of the van der Pol equation.- X-5. The van der Pol equation for a small ?> 0.- X-6. The van der Pol equation for a large parameter.- X-7. A theorem due to M. Nagumo.- X-8. A singular perturbation problem.- Exercises X.- XI. Asymptotic Expansions.- XI-1. Asymptotic expansions in the sense of Poincaré.- XI-2. Gevrey asymptotics.- XI-3. Flat functions in the Gevrey asymptotics.- XI-4. Basic properties of Gevrey asymptotic expansions.- XI-5. Proof of Lemma XI-2-6.- Exercises XI.- XII. Asymptotic Expansions in a Parameter.- XII-1. An existence theorem.- XII-2. Basic estimates.- XII-3. Proof of Theorem XII-1-2.- XII-4. A block-diagonalization theorem.- XII-5. Gevrey asymptotic solutions in a parameter.- XII-6. Analytic simplification in a parameter.- Exercises XII.- XIII. Singularities of the Second Kind.- XIII-1. An existence theorem.- XIII-2. Basic estimates.- XIII-3. Proof of Theorem XIII-1-2.- XIII-4. A block-diagonalization theorem.- XIII-5. Cyclic vectors (A lemma of P. Deligne).- XIII-6. The Hukuhara-Turrittin theorem.- XIII-7. An n-th-order linear differential equation at a singular point of the second kind.- XIII-8. Gevrey property of asymptotic solutions at an irregular singular point.- Exercises XIII.- References.
Recenzii
"This book in pure mathematics will guide the reader on a newly marked path through classic and awesome terrain---first so well described by Coddington and Levinson---toward research in the important and useful areas of power series solutions and asymptotics. The path not taken would be marked by at least one explicit mention of a Poincaré map, a resonance in celestial mechanics, an average, a traveling wave, or a transversal intersection of separatrices."--MATHEMATICAL REVIEWS