A Course in Constructive Algebra: Universitext
Autor Ray Mines, Fred Richman, Wim Ruitenburgen Limba Engleză Paperback – 18 dec 1987
Din seria Universitext
- 15%
Preț: 389.77 lei -
Preț: 454.23 lei - 15%
Preț: 532.05 lei - 19%
Preț: 426.01 lei - 17%
Preț: 391.16 lei - 15%
Preț: 522.85 lei - 19%
Preț: 506.17 lei -
Preț: 470.62 lei -
Preț: 442.01 lei -
Preț: 399.23 lei - 17%
Preț: 462.48 lei - 15%
Preț: 487.81 lei - 15%
Preț: 391.52 lei -
Preț: 384.76 lei - 15%
Preț: 390.68 lei -
Preț: 348.83 lei -
Preț: 409.96 lei - 15%
Preț: 391.93 lei - 15%
Preț: 426.38 lei - 15%
Preț: 389.77 lei - 15%
Preț: 464.98 lei -
Preț: 469.31 lei - 15%
Preț: 424.92 lei - 15%
Preț: 460.35 lei -
Preț: 389.34 lei -
Preț: 335.70 lei -
Preț: 417.67 lei - 19%
Preț: 450.90 lei - 15%
Preț: 397.81 lei - 15%
Preț: 572.89 lei -
Preț: 367.85 lei - 15%
Preț: 456.60 lei - 15%
Preț: 513.20 lei - 15%
Preț: 476.97 lei -
Preț: 374.91 lei -
Preț: 465.60 lei - 20%
Preț: 490.60 lei - 15%
Preț: 579.03 lei - 15%
Preț: 565.69 lei -
Preț: 471.15 lei -
Preț: 367.12 lei -
Preț: 475.01 lei -
Preț: 443.31 lei - 20%
Preț: 319.60 lei - 15%
Preț: 481.36 lei - 15%
Preț: 455.18 lei - 15%
Preț: 576.22 lei - 15%
Preț: 560.81 lei
Preț: 618.64 lei
Preț vechi: 727.80 lei
-15%
Puncte Express: 928
Preț estimativ în valută:
109.48€ • 127.95$ • 95.05£
109.48€ • 127.95$ • 95.05£
Carte tipărită la comandă
Livrare economică 20 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387966403
ISBN-10: 0387966404
Pagini: 344
Ilustrații: XI, 344 p. 1 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.5 kg
Ediția:1988
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
ISBN-10: 0387966404
Pagini: 344
Ilustrații: XI, 344 p. 1 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.5 kg
Ediția:1988
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Sets.- 1. Constructive vs. classical mathematics.- 2. Sets, subsets and functions.- 3. Choice.- 4. Categories.- 5. Partially ordered sets and lattices.- 6. Well-founded sets and ordinals.- II. Basic Algebra.- 1. Groups.- 2. Rings and fields.- 3. Real numbers.- 4. Modules.- 5. Polynomial rings.- 6. Matrices and vector spaces.- 7. Determinants.- 8. Symmetric polynomials.- III. Rings And Modules.- 1. Quasi-regular ideals.- 2. Coherent and Noetherian modules.- 3. Localization.- 4. Tensor products.- 5. Flat modules.- 6. Local rings.- 7. Commutative local rings.- IV. Divisibility in Discrete Domains.- 1. Cancellation monoids.- 2. UFD's and Bézout domains.- 3. Dedekind-Hasse rings and Euclidean domains.- 4. Polynomial rings.- V. Principal Ideal Domains.- 1. Diagonalizing matrices.- 2. Finitely presented modules.- 3. Torsion modules, p-components, elementary divisors.- 4. Linear transformations.- VI. Field Theory.- 1. Integral extensions and impotent rings.- 2. Algebraic independence and transcendence bases.- 3. Splitting fields and algebraic closures.- 4. Separability and diagonalizability.- 5. Primitive elements.- 6. Separability and characteristic p.- 7. Perfect fields.- 8. Galois theory.- VII. Factoring Polynomials.- 1. Factorial and separably factorial fields.- 2. Extensions of (separably) factorial fields.- 3. Condition p.- 4. The fundamental theorem of algebra.- VIII. Commutative Noetherian Rings.- 1. The Hilbert basis theorem.- 2. Noether normalization and the Artin-Rees lemma.- 3. The Nullstellensatz.- 4. Tennenbaum' s approach to the Hilbert basis theorem.- 5. Primary ideals.- 6. Localization.- 7. Primary decomposition.- 8. Lasker-Noether rings.- 9. Fully Lasker-Noether rings.- 10. The principal ideal theorem.- IX. Finite Dimensional Algebras.- 1. Representations.- 2. The density theorem.- 3. The radical and summands.- 4. Wedderburn's theorem, part one.- 5. Matrix rings and division algebras.- X. Free Groups.- 1. Existence and uniqueness.- 2. Nielsen sets.- 3.Finitely generated subgroups.- 4. Detachable subgroups of finite-rank free groups.- 5. Conjugate subgroups.- XI. Abelian Groups.- 1. Finite-rank torsion-free groups.- 2. Divisible groups.- 3. Height functions on p-groups.- 4. Ulm's theorem.- 5. Construction of Ulm groups.- XII. Valuation Theory.- 1. Valuations.- 2. Locally precompact valuations.- 3. Pseudofactorial fields.- 4. Normed vector spaces.- 5. Real and complex fields.- 6. Hensel's lemma.- 7. Extensions of valuations.- 8. e and f.- XIII. Dedekind Domains.- 1. Dedekind sets of valuations.- 2. Ideal theory.- 3. Finite extensions.