Algorithmic Learning Theory: Lecture Notes in Artificial Intelligence
Editat de Sanjay Jain, Rémi Munos, Frank Stephan, Thomas Zeugmannen Limba Engleză Paperback – 11 sep 2013
Din seria Lecture Notes in Artificial Intelligence
- 20%
Preț: 319.75 lei - 20%
Preț: 638.44 lei - 20%
Preț: 314.86 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 678.21 lei - 20%
Preț: 331.30 lei - 20%
Preț: 324.19 lei - 20%
Preț: 321.81 lei - 20%
Preț: 321.03 lei - 20%
Preț: 325.79 lei - 20%
Preț: 562.49 lei - 20%
Preț: 322.61 lei - 15%
Preț: 558.12 lei - 20%
Preț: 568.70 lei - 20%
Preț: 316.28 lei - 20%
Preț: 317.85 lei - 20%
Preț: 330.54 lei - 20%
Preț: 328.16 lei - 20%
Preț: 338.47 lei - 20%
Preț: 327.36 lei - 20%
Preț: 620.33 lei - 20%
Preț: 328.94 lei - 20%
Preț: 634.45 lei - 20%
Preț: 641.62 lei - 20%
Preț: 314.22 lei - 20%
Preț: 324.19 lei - 20%
Preț: 1022.15 lei -
Preț: 371.73 lei - 20%
Preț: 317.05 lei - 20%
Preț: 573.45 lei - 20%
Preț: 330.54 lei - 20%
Preț: 316.28 lei - 20%
Preț: 319.13 lei - 20%
Preț: 637.64 lei - 20%
Preț: 324.19 lei - 20%
Preț: 638.76 lei - 20%
Preț: 314.67 lei - 20%
Preț: 321.03 lei - 20%
Preț: 687.57 lei - 20%
Preț: 851.78 lei - 20%
Preț: 635.26 lei - 20%
Preț: 321.03 lei - 20%
Preț: 334.49 lei - 20%
Preț: 333.68 lei - 20%
Preț: 636.86 lei -
Preț: 385.99 lei - 20%
Preț: 325.79 lei
Preț: 327.12 lei
Preț vechi: 408.89 lei
-20%
Puncte Express: 491
Preț estimativ în valută:
57.83€ • 68.95$ • 50.16£
57.83€ • 68.95$ • 50.16£
Carte tipărită la comandă
Livrare economică 16-30 martie
Specificații
ISBN-13: 9783642409349
ISBN-10: 3642409342
Pagini: 416
Ilustrații: XVIII, 397 p. 30 illus.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.63 kg
Ediția:2013
Editura: Springer
Seria Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642409342
Pagini: 416
Ilustrații: XVIII, 397 p. 30 illus.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.63 kg
Ediția:2013
Editura: Springer
Seria Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Editors’ Introduction.- Learning and Optimizing with Preferences.- Efficient Algorithms for Combinatorial Online Prediction.- Exact Learning from Membership Queries: Some Techniques, Results and New Directions.- Online Learning Universal Algorithm for Trading in Stock Market Based on the Method of Calibration.- Combinatorial Online Prediction via Metarounding.- On Competitive Recommendations.- Online PCA with Optimal Regrets.- Inductive Inference and Grammatical Inference Partial Learning of Recursively Enumerable Languages.- Topological Separations in Inductive Inference.- PAC Learning of Some Subclasses of Context-Free Grammars with Basic Distributional Properties from Positive Data.- Universal Knowledge-Seeking Agents for Stochastic Environments.- Teaching and Learning from Queries Order Compression Schemes.- Learning a Bounded-Degree Tree Using Separator Queries.- Faster Hoeffding Racing: Bernstein Races via Jackknife Estimates.- Robust Risk-Averse Stochastic Multi-armed Bandits.- An Efficient Algorithm for Learning with Semi-bandit Feedback.- Differentially-Private Learning of Low Dimensional Manifolds.- Generalization and Robustness of Batched Weighted Average Algorithm with V-Geometrically Ergodic Markov Data.- Adaptive Metric Dimensionality Reduction.- Dimension-Adaptive Bounds on Compressive FLD Classification.- Bayesian Methods for Low-Rank Matrix Estimation: Short Survey and Theoretical Study.- Concentration and Confidence for Discrete Bayesian Sequence Predictors.- Algorithmic Connections between Active Learning and Stochastic Convex Optimization.- Unsupervised/Semi-Supervised Learning Unsupervised Model-Free Representation Learning.- Fast Spectral Clustering via the Nyström Method.- Nonparametric Multiple Change Point Estimation in Highly Dependent Time Series.
Caracteristici
Conference proceedings of the International Conference on Algorithmic Learning Theory