Advances in Machine Learning: First Asian Conference on Machine Learning, ACML 2009, Nanjing, China, November 2-4, 2009. Proceedings: Lecture Notes in Computer Science, cartea 5828
Editat de Zhi-Hua Zhou, Takashi Washioen Limba Engleză Paperback – 6 oct 2009
Din seria Lecture Notes in Computer Science
- 20%
Preț: 426.75 lei - 20%
Preț: 315.62 lei - 20%
Preț: 320.92 lei - 15%
Preț: 426.53 lei - 20%
Preț: 313.87 lei - 20%
Preț: 355.79 lei - 20%
Preț: 355.54 lei - 20%
Preț: 355.18 lei - 20%
Preț: 390.68 lei - 20%
Preț: 392.03 lei - 20%
Preț: 498.95 lei - 20%
Preț: 390.79 lei - 20%
Preț: 495.44 lei - 20%
Preț: 498.80 lei - 20%
Preț: 498.50 lei - 20%
Preț: 355.93 lei - 20%
Preț: 639.52 lei - 20%
Preț: 499.90 lei - 20%
Preț: 498.95 lei - 20%
Preț: 270.68 lei - 20%
Preț: 321.68 lei - 20%
Preț: 391.36 lei - 20%
Preț: 322.09 lei - 20%
Preț: 498.90 lei - 20%
Preț: 312.82 lei - 20%
Preț: 496.73 lei - 20%
Preț: 463.03 lei - 20%
Preț: 531.75 lei - 15%
Preț: 496.40 lei - 20%
Preț: 497.25 lei - 20%
Preț: 498.80 lei - 20%
Preț: 461.86 lei - 20%
Preț: 355.59 lei - 20%
Preț: 324.19 lei -
Preț: 418.19 lei - 20%
Preț: 498.59 lei - 20%
Preț: 391.28 lei - 20%
Preț: 355.69 lei - 15%
Preț: 499.72 lei - 20%
Preț: 499.40 lei - 20%
Preț: 390.42 lei - 20%
Preț: 497.75 lei - 20%
Preț: 326.81 lei - 20%
Preț: 322.32 lei - 20%
Preț: 390.42 lei - 20%
Preț: 458.84 lei - 20%
Preț: 427.09 lei - 20%
Preț: 499.90 lei - 20%
Preț: 320.72 lei
Preț: 326.55 lei
Preț vechi: 408.19 lei
-20% Nou
Puncte Express: 490
Preț estimativ în valută:
57.79€ • 67.39$ • 50.74£
57.79€ • 67.39$ • 50.74£
Carte tipărită la comandă
Livrare economică 15-29 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642052231
ISBN-10: 3642052231
Pagini: 428
Ilustrații: XV, 413 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.61 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642052231
Pagini: 428
Ilustrații: XV, 413 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.61 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Keynote and Invited Talks.- Machine Learning and Ecosystem Informatics: Challenges and Opportunities.- Density Ratio Estimation: A New Versatile Tool for Machine Learning.- Transfer Learning beyond Text Classification.- Regular Papers.- Improving Adaptive Bagging Methods for Evolving Data Streams.- A Hierarchical Face Recognition Algorithm.- Estimating Likelihoods for Topic Models.- Conditional Density Estimation with Class Probability Estimators.- Linear Time Model Selection for Mixture of Heterogeneous Components.- Max-margin Multiple-Instance Learning via Semidefinite Programming.- A Reformulation of Support Vector Machines for General Confidence Functions.- Robust Discriminant Analysis Based on Nonparametric Maximum Entropy.- Context-Aware Online Commercial Intention Detection.- Feature Selection via Maximizing Neighborhood Soft Margin.- Accurate Probabilistic Error Bound for Eigenvalues of Kernel Matrix.- Community Detection on Weighted Networks: A Variational Bayesian Method.- Averaged Naive Bayes Trees: A New Extension of AODE.- Automatic Choice of Control Measurements.- Coupled Metric Learning for Face Recognition with Degraded Images.- Cost-Sensitive Boosting: Fitting an Additive Asymmetric Logistic Regression Model.- On Compressibility and Acceleration of Orthogonal NMF for POMDP Compression.- Building a Decision Cluster Forest Model to Classify High Dimensional Data with Multi-classes.- Query Selection via Weighted Entropy in Graph-Based Semi-supervised Classification.- Learning Algorithms for Domain Adaptation.- Mining Multi-label Concept-Drifting Data Streams Using Dynamic Classifier Ensemble.- Learning Continuous-Time Information Diffusion Model for Social Behavioral Data Analysis.- Privacy-Preserving Evaluation of Generalization Error and Its Applicationto Model and Attribute Selection.- Coping with Distribution Change in the Same Domain Using Similarity-Based Instance Weighting.- Monte-Carlo Tree Search in Poker Using Expected Reward Distributions.- Injecting Structured Data to Generative Topic Model in Enterprise Settings.- Weighted Nonnegative Matrix Co-Tri-Factorization for Collaborative Prediction.