Algorithmic Learning Theory: 21st International Conference, ALT 2010, Canberra, Australia, October 6-8, 2010. Proceedings: Lecture Notes in Computer Science, cartea 6331
Editat de Marcus Hutter, Frank Stephan, Vladimir Vovk, Thomas Zeugmannen Limba Engleză Paperback – 27 sep 2010
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.14 lei - 20%
Preț: 461.32 lei - 20%
Preț: 460.98 lei - 20%
Preț: 390.41 lei - 20%
Preț: 526.98 lei - 15%
Preț: 388.21 lei - 20%
Preț: 461.21 lei - 20%
Preț: 390.08 lei - 20%
Preț: 496.30 lei - 20%
Preț: 461.21 lei - 20%
Preț: 389.45 lei - 15%
Preț: 461.53 lei - 20%
Preț: 389.63 lei - 20%
Preț: 496.68 lei - 20%
Preț: 461.70 lei - 20%
Preț: 251.97 lei - 20%
Preț: 390.86 lei - 20%
Preț: 532.16 lei - 20%
Preț: 461.52 lei - 20%
Preț: 255.72 lei - 20%
Preț: 498.10 lei - 20%
Preț: 497.19 lei - 20%
Preț: 499.02 lei - 20%
Preț: 389.82 lei - 20%
Preț: 390.92 lei - 20%
Preț: 390.86 lei - 20%
Preț: 390.92 lei - 20%
Preț: 390.08 lei - 20%
Preț: 461.45 lei - 20%
Preț: 392.36 lei - 20%
Preț: 460.75 lei - 20%
Preț: 461.32 lei - 20%
Preț: 389.90 lei - 20%
Preț: 639.26 lei - 20%
Preț: 390.66 lei - 20%
Preț: 391.57 lei - 20%
Preț: 389.57 lei - 20%
Preț: 497.97 lei - 20%
Preț: 462.36 lei - 20%
Preț: 460.67 lei - 20%
Preț: 423.95 lei - 5%
Preț: 515.91 lei - 15%
Preț: 535.55 lei - 20%
Preț: 531.90 lei - 20%
Preț: 403.00 lei - 20%
Preț: 535.41 lei - 20%
Preț: 461.25 lei - 20%
Preț: 498.17 lei - 20%
Preț: 461.52 lei - 20%
Preț: 249.77 lei
Preț: 327.54 lei
Preț vechi: 409.42 lei
-20%
Puncte Express: 491
Preț estimativ în valută:
57.97€ • 67.75$ • 50.33£
57.97€ • 67.75$ • 50.33£
Carte disponibilă
Livrare economică 30 ianuarie-13 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642161070
ISBN-10: 3642161073
Pagini: 434
Ilustrații: XIII, 421 p. 45 illus.
Greutate: 0.64 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642161073
Pagini: 434
Ilustrații: XIII, 421 p. 45 illus.
Greutate: 0.64 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Editors’ Introduction.- Editors’ Introduction.- Invited Papers.- Towards General Algorithms for Grammatical Inference.- The Blessing and the Curse of the Multiplicative Updates.- Discovery of Abstract Concepts by a Robot.- Contrast Pattern Mining and Its Application for Building Robust Classifiers.- Optimal Online Prediction in Adversarial Environments.- Regular Contributions.- An Algorithm for Iterative Selection of Blocks of Features.- Bayesian Active Learning Using Arbitrary Binary Valued Queries.- Approximation Stability and Boosting.- A Spectral Approach for Probabilistic Grammatical Inference on Trees.- PageRank Optimization in Polynomial Time by Stochastic Shortest Path Reformulation.- Inferring Social Networks from Outbreaks.- Distribution-Dependent PAC-Bayes Priors.- PAC Learnability of a Concept Class under Non-atomic Measures: A Problem by Vidyasagar.- A PAC-Bayes Bound for Tailored Density Estimation.- Compressed Learning with Regular Concept.- A Lower Bound for Learning Distributions Generated by Probabilistic Automata.- Lower Bounds on Learning Random Structures with Statistical Queries.- Recursive Teaching Dimension, Learning Complexity, and Maximum Classes.- Toward a Classification of Finite Partial-Monitoring Games.- Switching Investments.- Prediction with Expert Advice under Discounted Loss.- A Regularization Approach to Metrical Task Systems.- Solutions to Open Questions for Non-U-Shaped Learning with Memory Limitations.- Learning without Coding.- Learning Figures with the Hausdorff Metric by Fractals.- Inductive Inference of Languages from Samplings.- Optimality Issues of Universal Greedy Agents with Static Priors.- Consistency of Feature Markov Processes.- Algorithms for Adversarial Bandit Problems with Multiple Plays.- Online Multiple KernelLearning: Algorithms and Mistake Bounds.- An Identity for Kernel Ridge Regression.
Caracteristici
unique visibility, state-of-the-art survey, fast-track conference proceedings