Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010. Proceedings, Part II: Lecture Notes in Computer Science, cartea 6322
Editat de José L. Balcázar, Francesco Bonchi, Aristides Gionis, Michèle Sebagen Limba Engleză Paperback – 13 sep 2010
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (3) | 332.10 lei 3-5 săpt. | |
| Springer Berlin, Heidelberg – 13 sep 2010 | 332.10 lei 3-5 săpt. | |
| Springer Berlin, Heidelberg – 13 sep 2010 | 637.64 lei 3-5 săpt. | |
| Springer Berlin, Heidelberg – 13 sep 2010 | 638.44 lei 3-5 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 1020.28 lei - 20%
Preț: 573.45 lei - 20%
Preț: 330.54 lei - 20%
Preț: 556.96 lei - 20%
Preț: 400.77 lei - 15%
Preț: 558.12 lei - 20%
Preț: 629.71 lei - 20%
Preț: 328.94 lei - 20%
Preț: 375.72 lei - 20%
Preț: 568.70 lei - 20%
Preț: 386.08 lei - 20%
Preț: 489.11 lei - 20%
Preț: 620.33 lei - 20%
Preț: 731.97 lei - 20%
Preț: 1033.45 lei - 20%
Preț: 403.00 lei - 20%
Preț: 782.57 lei - 20%
Preț: 336.86 lei - 20%
Preț: 558.53 lei - 20%
Preț: 850.42 lei - 20%
Preț: 432.78 lei - 20%
Preț: 342.61 lei - 20%
Preț: 631.96 lei - 20%
Preț: 904.16 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 487.46 lei - 20%
Preț: 400.17 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 984.64 lei - 20%
Preț: 560.93 lei - 20%
Preț: 733.68 lei - 20%
Preț: 563.29 lei - 20%
Preț: 793.92 lei - 20%
Preț: 733.68 lei - 20%
Preț: 679.09 lei - 20%
Preț: 1137.10 lei - 20%
Preț: 327.36 lei - 20%
Preț: 340.04 lei - 20%
Preț: 327.36 lei - 20%
Preț: 560.93 lei - 20%
Preț: 324.19 lei - 20%
Preț: 735.28 lei - 20%
Preț: 560.93 lei - 20%
Preț: 373.80 lei -
Preț: 395.25 lei - 20%
Preț: 488.90 lei - 20%
Preț: 293.24 lei
Preț: 332.10 lei
Preț vechi: 415.13 lei
-20%
Puncte Express: 498
Preț estimativ în valută:
58.71€ • 70.15$ • 50.86£
58.71€ • 70.15$ • 50.86£
Carte disponibilă
Livrare economică 21 februarie-07 martie
Specificații
ISBN-13: 9783642158827
ISBN-10: 364215882X
Pagini: 518
Ilustrații: XXI, 518 p. 145 illus.
Greutate: 0.77 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 364215882X
Pagini: 518
Ilustrații: XXI, 518 p. 145 illus.
Greutate: 0.77 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Regular Papers.- Bayesian Knowledge Corroboration with Logical Rules and User Feedback.- Learning an Affine Transformation for Non-linear Dimensionality Reduction.- NDPMine: Efficiently Mining Discriminative Numerical Features for Pattern-Based Classification.- Hidden Conditional Ordinal Random Fields for Sequence Classification.- A Unifying View of Multiple Kernel Learning.- Evolutionary Dynamics of Regret Minimization.- Recognition of Instrument Timbres in Real Polytimbral Audio Recordings.- Finding Critical Nodes for Inhibiting Diffusion of Complex Contagions in Social Networks.- Semi-supervised Abstraction-Augmented String Kernel for Multi-level Bio-Relation Extraction.- Online Knowledge-Based Support Vector Machines.- Learning with Randomized Majority Votes.- Exploration in Relational Worlds.- Efficient Confident Search in Large Review Corpora.- Learning to Tag from Open Vocabulary Labels.- A Robustness Measure of Association Rules.- Automatic Model Adaptation for Complex Structured Domains.- Collective Traffic Forecasting.- On Detecting Clustered Anomalies Using SCiForest.- Constrained Parameter Estimation for Semi-supervised Learning: The Case of the Nearest Mean Classifier.- Online Learning in Adversarial Lipschitz Environments.- Summarising Data by Clustering Items.- Classification and Novel Class Detection of Data Streams in a Dynamic Feature Space.- Latent Structure Pattern Mining.- First-Order Bayes-Ball.- Learning from Demonstration Using MDP Induced Metrics.- Demand-Driven Tag Recommendation.- Solving Structured Sparsity Regularization with Proximal Methods.- Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models.- Improved MinMax Cut Graph Clustering with Nonnegative Relaxation.- Integrating Constraint Programming and Itemset Mining.- Topic Modeling for Personalized Recommendation of Volatile Items.- Conditional Ranking on Relational Data.
Caracteristici
Unique visibility State-of-the-art survey Fast-track conference proceedings