The Jackknife and Bootstrap: Springer Series in Statistics
Autor Jun Shao, Dongsheng Tuen Limba Engleză Hardback – 21 iul 1995
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 2012.40 lei 6-8 săpt. | |
| Springer – 4 oct 2012 | 2012.40 lei 6-8 săpt. | |
| Hardback (1) | 2017.43 lei 6-8 săpt. | |
| Springer – 21 iul 1995 | 2017.43 lei 6-8 săpt. |
Din seria Springer Series in Statistics
- 20%
Preț: 481.76 lei - 18%
Preț: 752.32 lei - 15%
Preț: 426.92 lei - 18%
Preț: 923.31 lei - 20%
Preț: 1896.60 lei - 18%
Preț: 954.38 lei - 18%
Preț: 1331.68 lei -
Preț: 376.01 lei - 18%
Preț: 915.43 lei - 15%
Preț: 624.77 lei - 18%
Preț: 1013.07 lei - 18%
Preț: 918.17 lei - 18%
Preț: 858.10 lei - 18%
Preț: 877.81 lei -
Preț: 376.37 lei - 15%
Preț: 621.17 lei - 18%
Preț: 1330.29 lei - 18%
Preț: 1196.88 lei - 18%
Preț: 1183.54 lei - 18%
Preț: 1071.18 lei - 18%
Preț: 873.11 lei - 15%
Preț: 618.99 lei - 15%
Preț: 618.50 lei - 15%
Preț: 618.34 lei - 18%
Preț: 775.16 lei - 15%
Preț: 521.02 lei - 18%
Preț: 1188.99 lei - 15%
Preț: 623.05 lei - 18%
Preț: 1274.37 lei - 18%
Preț: 1176.08 lei - 18%
Preț: 919.38 lei - 18%
Preț: 976.81 lei - 15%
Preț: 621.17 lei -
Preț: 376.75 lei - 15%
Preț: 622.11 lei - 15%
Preț: 627.62 lei - 18%
Preț: 906.32 lei - 15%
Preț: 563.80 lei - 18%
Preț: 1333.82 lei - 18%
Preț: 859.03 lei - 18%
Preț: 974.24 lei - 18%
Preț: 1275.41 lei - 18%
Preț: 699.51 lei - 15%
Preț: 617.72 lei - 18%
Preț: 1026.72 lei - 15%
Preț: 624.77 lei - 18%
Preț: 1761.16 lei - 18%
Preț: 753.63 lei
Preț: 2017.43 lei
Preț vechi: 2460.27 lei
-18% Nou
Puncte Express: 3026
Preț estimativ în valută:
356.100€ • 418.62$ • 313.51£
356.100€ • 418.62$ • 313.51£
Carte tipărită la comandă
Livrare economică 09-23 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387945156
ISBN-10: 0387945156
Pagini: 540
Ilustrații: XVII, 517 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.9 kg
Ediția:1995
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387945156
Pagini: 540
Ilustrații: XVII, 517 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.9 kg
Ediția:1995
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Statistics and Their Sampling Distributions.- 1.2 The Traditional Approach.- 1.3 The Jackknife.- 1.4 The Bootstrap.- 1.5 Extensions to Complex Problems.- 1.6 Scope of Our Studies.- 2. Theory for the Jackknife.- 2.1 Variance Estimation for Functions of Means.- 2.2 Variance Estimation for Functionals.- 2.3 The Delete-d Jackknife.- 2.4 Other Applications.- 2.5 Conclusions and Discussions.- 3. Theory for the Bootstrap.- 3.1 Techniques in Proving Consistency.- 3.2 Consistency: Some Major Results.- 3.3 Accuracy and Asymptotic Comparisons.- 3.4 Fixed Sample Performance.- 3.5 Smoothed Bootstrap.- 3.6 Nonregular Cases.- 3.7 Conclusions and Discussions.- 4. Bootstrap Confidence Sets and Hypothesis Tests.- 4.1 Bootstrap Confidence Sets.- 4.2 Asymptotic Theory.- 4.3 The Iterative Bootstrap and Other Methods.- 4.4 Empirical Comparisons.- 4.5 Bootstrap Hypothesis Tests.- 4.6 Conclusions and Discussions.- 5. Computational Methods.- 5.1 The Delete-1 Jackknife.- 5.2 The Delete-d Jackknife.- 5.3 Analytic Approaches for the Bootstrap.- 5.4 Simulation Approaches for the Bootstrap.- 5.5 Conclusions and Discussions.- 6. Applications to Sample Surveys.- 6.1 Sampling Designs and Estimates.- 6.2 Resampling Methods.- 6.3 Comparisons by Simulation.- 6.4 Asymptotic Results.- 6.5 Resampling Under Imputation.- 6.6 Conclusions and Discussions.- 7. Applications to Linear Models.- 7.1 Linear Models and Regression Estimates.- 7.2 Variance and Bias Estimation.- 7.3 Inference and Prediction Using the Bootstrap.- 7.4 Model Selection.- 7.5 Asymptotic Theory.- 7.6 Conclusions and Discussions.- 8. Applications to Nonlinear, Nonparametric, and Multivariate Models.- 8.1 Nonlinear Regression.- 8.2 Generalized Linear Models.- 8.3 Cox’s Regression Models.- 8.4 Kernel Density Estimation.-8.5 Nonparametric Regression.- 8.6 Multivariate Analysis.- 8.7 Conclusions and Discussions.- 9. Applications to Time Series and Other Dependent Data.- 9.1 m-Dependent Data.- 9.2 Markov Chains.- 9.3 Autoregressive Time Series.- 9.4 Other Time Series.- 9.5 Stationary Processes.- 9.6 Conclusions and Discussions.- 10. Bayesian Bootstrap and Random Weighting.- 10.1 Bayesian Bootstrap.- 10.2 Random Weighting.- 10.3 Random Weighting for Functional and Linear Models.- 10.4 Empirical Results for Random Weighting.- 10.5 Conclusions and Discussions.- Appendix A. Asymptotic Results.- A.1 Modes of Convergence.- A.2 Convergence of Transformations.- A.4 The Borel-Cantelli Lemma.- A.5 The Law of Large Numbers.- A.6 The Law of the Iterated Logarithm.- A.7 Uniform Integrability.- A.8 The Central Limit Theorem.- A.9 The Berry-Esséen Theorem.- A.10 Edgeworth Expansions.- A.11 Cornish-Fisher Expansions.- Appendix B. Notation.- References.- Author Index.