Semi-Groups of Operators and Approximation
Autor Paul Leo Butzer, Hubert Berensen Limba Engleză Paperback – 27 feb 2012
Preț: 563.89 lei
Preț vechi: 663.40 lei
-15% Nou
Puncte Express: 846
Preț estimativ în valută:
99.77€ • 116.41$ • 87.23£
99.77€ • 116.41$ • 87.23£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642460685
ISBN-10: 3642460682
Pagini: 336
Ilustrații: XII, 322 p.
Dimensiuni: 152 x 229 x 19 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1967
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642460682
Pagini: 336
Ilustrații: XII, 322 p.
Dimensiuni: 152 x 229 x 19 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1967
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
One Fundamentals of Semi-Group Theory.- 1.0 Introduction.- 1.1 Elements of Semi-Group Theory.- 1.2 Representation Theorems for Semi-Groups of Operators.- 1.3 Resolvent and Characterization of the Generator.- 1.4 Dual Semi-Groups.- 1.5 Trigonometric Semi-Groups.- 1.6 Notes and Remarks.- Two Approximation Theorems for Semi-Groups of Operators.- 2.0 Introduction.- 2.1 Favard Classes and the Fundamental Approximation Theorems.- 2.2 Taylor, Peano, and Riemann Operators Generated by Semi-Groups of Operators.- 2.3 Theorems of Non-optimal Approximation.- 2.4 Applications to Periodic Singular Integrals.- 2.5 Approximation Theorems for Resolvent Operators.- 2.6 Laplace Transforms in Connection with a Generalized Heat Equation.- 2.7 Notes and Remarks.- Three Intermediate Spaces and Semi-Groups.- 3.0 Scope of the Chapter.- 3.1 Banach Subspaces of X Generated by Semi-Groups of Operators.- 3.2 Intermediate Spaces and Interpolation.- 3.3 Lorentz Spaces and Convexity Theorems.- 3.4 Intermediate Spaces of X and D(Ar).- 3.5 Equivalent Characterizations of X?, r; q Generated by Holomorphic Semi-Groups.- 3.6 Notes and Remarks.- Four Applications to Singular Integrals.- 4.0 Orientation.- 4.1 Periodic Functions.- 4.2 The Hilbert Transform and the Cauchy-Poisson Singular Integral.- 4.3 The Weierstrass Integral on Euclidean n-Space.- 4.4 Notes and Remarks.