Optimal Unbiased Estimation of Variance Components: Lecture Notes in Statistics, cartea 39
Autor James D. Malleyen Limba Engleză Paperback – dec 1986
Din seria Lecture Notes in Statistics
- 15%
Preț: 607.49 lei -
Preț: 371.20 lei - 15%
Preț: 496.25 lei - 18%
Preț: 909.21 lei - 15%
Preț: 618.19 lei - 15%
Preț: 609.08 lei - 18%
Preț: 1004.42 lei -
Preț: 425.11 lei - 15%
Preț: 614.90 lei - 18%
Preț: 1183.54 lei - 15%
Preț: 608.79 lei - 15%
Preț: 615.97 lei - 15%
Preț: 616.64 lei -
Preț: 368.79 lei - 20%
Preț: 607.59 lei - 15%
Preț: 633.43 lei - 18%
Preț: 907.64 lei -
Preț: 371.97 lei -
Preț: 367.49 lei - 18%
Preț: 905.13 lei - 18%
Preț: 906.03 lei -
Preț: 368.59 lei - 15%
Preț: 608.90 lei - 15%
Preț: 611.12 lei -
Preț: 378.78 lei - 15%
Preț: 675.70 lei - 15%
Preț: 619.75 lei - 15%
Preț: 620.23 lei -
Preț: 367.85 lei - 15%
Preț: 611.74 lei - 15%
Preț: 622.91 lei -
Preț: 366.19 lei - 15%
Preț: 609.85 lei - 15%
Preț: 623.70 lei -
Preț: 364.56 lei - 15%
Preț: 623.52 lei - 15%
Preț: 622.59 lei - 18%
Preț: 750.16 lei - 15%
Preț: 616.45 lei - 18%
Preț: 1059.82 lei - 15%
Preț: 618.34 lei -
Preț: 370.10 lei - 15%
Preț: 615.66 lei - 15%
Preț: 625.26 lei - 15%
Preț: 616.95 lei - 15%
Preț: 613.49 lei
Preț: 367.12 lei
Nou
Puncte Express: 551
Preț estimativ în valută:
64.97€ • 76.20$ • 56.97£
64.97€ • 76.20$ • 56.97£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387964492
ISBN-10: 0387964495
Pagini: 146
Ilustrații: X, 146 p. 1 illus.
Dimensiuni: 170 x 244 x 9 mm
Greutate: 0.26 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387964495
Pagini: 146
Ilustrații: X, 146 p. 1 illus.
Dimensiuni: 170 x 244 x 9 mm
Greutate: 0.26 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
One: The Basic Model and the Estimation Problem.- 1.1 Introduction.- 1.2 An Example.- 1.3 The Matrix Formulation.- 1.4 The Estimation Criteria.- 1.5 Properties of the Criteria.- 1.6 Selection of Estimation Criteria.- Two: Basic Linear Technique.- 2.1 Introduction.- 2.2 The vec and mat Operators.- 2.3 Useful Properties of the Operators.- Three: Linearization of the Basic Model.- 3.1 Introduction.- 3.2 The First Linearization.- 3.3 Calculation of var(y).- 3.4 The Second Linearization of the Basic Model.- 3.5 Additional Details of the Linearizations.- Four: The Ordinary Least Squares Estimates.- 4.1 Introduction.- 4.2 The Ordinary Least Squares Estimates: Calculation.- 4.3 The Inner Structure of the Linearization.- 4.4 Estimable Functions of the Components.- 4.5 Further OLS Facts.- Five: The Seely-Zyskind Results.- 5.1 Introduction.- 5.2 The General Gauss-Markov Theorem: Some History and Motivation.- 5.3 The General Gauss-Markov Theorem: Preliminaries.- 5.4 The General Gauss-Markov Theorem: Statement and Proof.- 5.5 The Zyskind Version of the Gauss-Markov Theorem.- 5.6 The Seely Condition for Optimal unbiased Estimation.- Six: The General Solution to Optimal Unbiased Estimation.- 6.1 Introduction.- 6.2 A Full Statement of the Problem.- 6.3 The Lehmann-Scheffé Result.- 6.4 The Two Types of Closure.- 6.5 The General Solution.- 6.6 An Example.- Seven: Background from Algebra.- 7.1 Introduction.- 7.2 Groups, Rings, Fields.- 7.3 Subrings and Ideals.- 7.4 Products in Jordan Rings.- 7.5 Idempotent and Nilpotent Elements.- 7.6 The Radical of an Associative or Jordan Algebra.- 7.7 Quadratic Ideals in Jordan Algebras.- Eight: The Structure of Semisimple Associative and Jordan Algebras.- 8.1 Introduction.- 8.2 The First Structure Theorem.- 8.3 Simple Jordan Algebras.- 8.4 SimpleAssociative Algebras.- Nine: The Algebraic Structure of Variance Components.- 9.1 Introduction.- 9.2 The Structure of the Space of Optimal Kernels.- 9.3 The Two Algebras Generated by Sp(?2).- 9.4 Quadratic Ideals in Sp(?2).- 9.5 Further Properties of the Space of Optimal Kernels.- 9.6 The Case of Sp(?2) Commutative.- 9.7 Examples of Mixed Model Structure Calculations: The Partially Balanced Incomplete Block Designs.- Ten: Statistical Consequences of the Algebraic Structure Theory.- 10.1 Introduction.- 10.2 The Jordan Decomposition of an Optimal Unbiased Estimate.- 10.3 Non-Negative Unbiased Estimation.- Concluding Remarks.- References.