Bilinear Forms and Zonal Polynomials: Lecture Notes in Statistics, cartea 102
Autor Arak M. Mathai, Serge B. Provost, Takesi Hayakawaen Limba Engleză Paperback – 19 mai 1995
Din seria Lecture Notes in Statistics
- 15%
Preț: 607.49 lei -
Preț: 371.20 lei - 15%
Preț: 496.25 lei - 18%
Preț: 1183.54 lei - 20%
Preț: 607.59 lei - 18%
Preț: 909.21 lei - 15%
Preț: 609.08 lei -
Preț: 425.11 lei - 18%
Preț: 906.03 lei - 15%
Preț: 633.43 lei - 15%
Preț: 618.19 lei - 18%
Preț: 1004.42 lei - 15%
Preț: 615.97 lei -
Preț: 368.79 lei - 15%
Preț: 614.90 lei - 15%
Preț: 616.64 lei -
Preț: 368.59 lei - 15%
Preț: 608.90 lei - 15%
Preț: 611.12 lei - 15%
Preț: 675.70 lei - 15%
Preț: 619.75 lei - 15%
Preț: 620.23 lei -
Preț: 367.85 lei - 15%
Preț: 611.74 lei - 15%
Preț: 622.91 lei -
Preț: 366.19 lei - 15%
Preț: 609.85 lei - 15%
Preț: 623.70 lei -
Preț: 364.56 lei - 15%
Preț: 623.52 lei - 15%
Preț: 622.59 lei - 18%
Preț: 750.16 lei - 15%
Preț: 616.45 lei - 18%
Preț: 1059.82 lei - 15%
Preț: 618.34 lei -
Preț: 370.10 lei - 15%
Preț: 615.66 lei - 15%
Preț: 625.26 lei - 15%
Preț: 616.95 lei - 15%
Preț: 613.49 lei - 15%
Preț: 619.45 lei -
Preț: 375.07 lei -
Preț: 370.46 lei - 15%
Preț: 612.23 lei - 15%
Preț: 615.52 lei
Preț: 378.78 lei
Nou
Puncte Express: 568
Preț estimativ în valută:
67.02€ • 78.19$ • 58.59£
67.02€ • 78.19$ • 58.59£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387945224
ISBN-10: 0387945229
Pagini: 376
Ilustrații: XII, 376 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.55 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387945229
Pagini: 376
Ilustrații: XII, 376 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.55 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Preliminaries.- 1.0 Introduction.- 1.1 Jacobians of Matrix Transformations.- 1.1a Some Frequently Used Jacobians in the Real Case.- 1.2 Singular and Nonsingular Normal Distributions.- 1.2a Normal Distribution in the Real Case.- 1.2b The Moment Generating Function for the Real Normal Distribution.- 1.3 Quadratic Forms in Normal Variables.- 1.3a Representations of a Quadratic Form.- 1.3b Representations of the m. g. f. of a Quadratic Expression.- 1.4 Matrix-variate Gamma and Beta Functions.- 1.4a Matrix-variate Gamma, Real Case.- 1.4b Matrix-variate Gamma Density, Real Case.- 1.4c The m. g. f. of a Matrix-variate Real Gamma Variable.- 1.4d Matrix-variate Beta, Real Case.- 1.5 Hypergeometric Series, Real Case.- 2 Quadratic and Bilinear Forms in Normal Vectors.- 2.0 Introduction.- 2.1 Various Representations.- 2.2 Density of a Gamma Difference.- 2.2a Some Particular Cases.- 2.3 Noncentral Gamma Difference.- 2.4 Moments and Cumulants of Bilinear Forms.- 2.4a Joint Moments and Cumulants of Quadratic and Bilinear Forms.- 2.4b Joint Cumulants of Bilinear Forms.- 2.4c Moments and Cumulants in the Singular Normal Case.- 2.4d Cumulants of Bilinear Expressions.- 2.5 Laplacianness of Bilinear Forms.- 2.5a Quadratic and Bilinear Forms in the Nonsingular Normal Case.- 2.5b NS Conditions for the Noncorrelated Normal Case.- 2.5c Quadratic and Bilinear Forms in the Singular Normal Case.- 2.5d Noncorrelated Singular Normal Case.- 2.5e The NS Conditions for a Quadratic Form to be NGL.- 2.6 Generalizations to Bilinear and Quadratic Expressions.- 2.6a Bilinear and Quadratic Expressions in the Nonsingular Normal Case.- 2.6b Bilinear and Quadratic Expressions in the Singular Normal Case.- 2.7 Independence of Bilinear and Quadratic Expressions.- 2.7a Independence of a Bilinear and a QuadraticForm.- 2.7b Independence of Two Bilinear Forms.- 2.7c Independence of Quadratic Expressions: Nonsingular Normal Case.- 2.7d Independence in the Singular Normal Case.- 2.8 Bilinear Forms and Noncentral Gamma Differences.- 2.8a Bilinear Forms in the Equicorrelated Case.- 2.8b Noncentral Case.- 2.9 Rectangular Matrices.- 2.9a Matrix-variate Laplacian.- 2.9b The Density of S2i.- 2.9c A Particular Case.- Exercises.- 3 Quadratic and Bilinear Forms in Elliptically Contoured Distributions.- 3.0 Introduction.- 3.1 De£nitions and Basic Results.- 3.2 Moments of Quadratic Forms.- 3.3 The Distribution of Quadratic Forms.- 3.4 Noncentral Distribution.- 3.5 Quadratic Forms in Random Matrices.- 3.6 Quadratic Forms of Random Idempotent Matrices.- 3.7 Cochran’s Theorem.- 3.8 Test Statistics for Elliptically Contoured Distributions.- Sample Correlation Coefficient.- Likelihood Ratio Criteria.- Exercises.- 4 Zonal Polynomials.- 4.0 Introduction.- 4.1 Wishart Distribution.- 4.2 Symmetric Polynomials.- 4.3 Zonal Polynomials.- 4.4 Laplace Transform and Hypergeometric Function.- 4.5 Binomial Coefficients.- 4.6 Some Special Functions.- Exercises.- Table 4.3.2(a).- Table 4.3.2(b).- Table 4.4.1.- 5 Generalized Quadratic Forms.- 5.0 Introduction.- 5.1 A Representation of the Distribution of a Generalized Quadratic Form.- 5.2 An Alternate Representation.- 5.3 The Distribution of the Latent Roots of a Quadratic Form.- 5.4 Distributions of Some Functions of XAX’.- 5.5 Generalized Hotelling’s T02.- 5.6 Anderson’s Linear Discriminant Function.- 5.7 Multivariate Calibration.- 5.8 Asymptotic Expansions of the Distribution of a Quadratic Form.- Exercises.- Table 5.6.1.- Table 5.6.2.- Appendix Invariant Polynomials.- Appendix A. l Representation of a Group.- Appendix A.2 Integration of theRepresentation Matrix over the Orthogonal Group.- Glossary of Symbols.- Author Index.