Discretization and MCMC Convergence Assessment: Lecture Notes in Statistics, cartea 135
Editat de Christian P. Roberten Limba Engleză Paperback – 13 aug 1998
Din seria Lecture Notes in Statistics
-
Preț: 450.64 lei - 18%
Preț: 907.64 lei - 15%
Preț: 609.08 lei - 15%
Preț: 616.64 lei - 18%
Preț: 1183.54 lei - 18%
Preț: 909.21 lei - 15%
Preț: 608.79 lei -
Preț: 371.97 lei - 15%
Preț: 607.49 lei - 18%
Preț: 906.03 lei - 15%
Preț: 633.43 lei - 15%
Preț: 614.90 lei -
Preț: 368.79 lei - 8%
Preț: 552.50 lei - 15%
Preț: 618.19 lei -
Preț: 368.59 lei - 15%
Preț: 608.90 lei - 15%
Preț: 611.12 lei -
Preț: 378.78 lei - 15%
Preț: 675.70 lei - 15%
Preț: 619.75 lei - 15%
Preț: 620.23 lei -
Preț: 367.85 lei - 15%
Preț: 611.74 lei - 15%
Preț: 622.91 lei -
Preț: 366.19 lei - 15%
Preț: 609.85 lei - 15%
Preț: 623.70 lei -
Preț: 364.56 lei - 15%
Preț: 623.52 lei - 15%
Preț: 622.59 lei - 18%
Preț: 750.16 lei - 15%
Preț: 616.45 lei - 18%
Preț: 1059.82 lei - 15%
Preț: 618.34 lei -
Preț: 370.10 lei - 15%
Preț: 615.66 lei - 15%
Preț: 625.26 lei - 15%
Preț: 616.95 lei - 15%
Preț: 613.49 lei - 15%
Preț: 619.45 lei -
Preț: 375.07 lei - 15%
Preț: 612.23 lei - 15%
Preț: 615.52 lei -
Preț: 377.12 lei
Preț: 611.57 lei
Preț vechi: 719.49 lei
-15%
Puncte Express: 917
Preț estimativ în valută:
108.14€ • 127.49$ • 93.33£
108.14€ • 127.49$ • 93.33£
Carte tipărită la comandă
Livrare economică 19 martie-02 aprilie
Specificații
ISBN-13: 9780387985916
ISBN-10: 0387985913
Pagini: 192
Ilustrații: XI, 192 p. 20 illus.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387985913
Pagini: 192
Ilustrații: XI, 192 p. 20 illus.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Markov Chain Monte Carlo Methods.- 1.1 Motivations.- 1.2 Metropolis-Hastings algorithms.- 1.3 The Gibbs sampler.- 1.4 Perfect sampling.- 1.5 Convergence results from a Duality Principle.- 2 Convergence Control of MCMC Algorithms.- 2.1 Introduction.- 2.2 Convergence assessments for single chains.- 2.3 Convergence assessments based on parallel chains.- 2.4 Coupling techniques.- 3 Linking Discrete and Continuous Chains.- 3.1 Introduction.- 3.2 Rao-Blackwellization.- 3.3 Riemann sum control variates.- 3.4 A mixture example.- 4 Valid Discretization via Renewal Theory.- 4.1 Introduction.- 4.2 Renewal theory and small sets.- 4.3 Discretization of a continuous Markov chain.- 4.4 Convergence assessment through the divergence criterion.- 4.5 Illustration for the benchmark examples.- 4.6 Renewal theory for variance estimation.- 5 Control by the Central Limit Theorem.- 5.1 Introduction.- 5.2 CLT and Renewal Theory.- 5.3 Two control methods with parallel chains.- 5.4 Extension to continuous state chains.- 5.5 Illustration for the benchmark examples.- 5.6 Testing normality on the latent variables.- 6 Convergence Assessment in Latent Variable Models: DNA Applications.- 6.1 Introduction.- 6.2 Hidden Markov model and associated Gibbs sampler.- 6.3 Analysis of thebIL67bacteriophage genome: first convergence diagnostics.- 6.4 Coupling from the past for theM1-M0model.- 6.5 Control by the Central Limit Theorem.- 7 Convergence Assessment in Latent Variable Models: Application to the Longitudinal Modelling of a Marker of HIV Progression.- 7.1 Introduction.- 7.2 Hierarchical Model.- 7.3 Analysis of the San Francisco Men’s Health Study.- 7.4 Convergence assessment.- 8 Estimation of Exponential Mixtures.- 8.1 Exponential mixtures.- 8.2 Convergence evaluation.- References.- Author Index.