Non-Regular Statistical Estimation: Lecture Notes in Statistics, cartea 107
Autor Masafumi Akahira, Kei Takeuchien Limba Engleză Paperback – 18 aug 1995
Din seria Lecture Notes in Statistics
- 15%
Preț: 607.49 lei -
Preț: 371.20 lei - 15%
Preț: 496.25 lei - 18%
Preț: 1183.54 lei - 20%
Preț: 607.59 lei - 18%
Preț: 909.21 lei - 15%
Preț: 609.08 lei - 15%
Preț: 633.43 lei -
Preț: 425.11 lei - 15%
Preț: 614.90 lei - 18%
Preț: 907.64 lei - 15%
Preț: 615.97 lei - 15%
Preț: 616.64 lei -
Preț: 368.79 lei - 15%
Preț: 618.19 lei - 18%
Preț: 1004.42 lei -
Preț: 371.97 lei - 18%
Preț: 906.03 lei - 15%
Preț: 608.79 lei -
Preț: 368.59 lei - 15%
Preț: 608.90 lei - 15%
Preț: 611.12 lei -
Preț: 378.78 lei - 15%
Preț: 675.70 lei - 15%
Preț: 619.75 lei - 15%
Preț: 620.23 lei - 15%
Preț: 611.74 lei - 15%
Preț: 622.91 lei -
Preț: 366.19 lei - 15%
Preț: 609.85 lei - 15%
Preț: 623.70 lei -
Preț: 364.56 lei - 15%
Preț: 623.52 lei - 15%
Preț: 622.59 lei - 18%
Preț: 750.16 lei - 15%
Preț: 616.45 lei - 18%
Preț: 1059.82 lei - 15%
Preț: 618.34 lei -
Preț: 370.10 lei - 15%
Preț: 615.66 lei - 15%
Preț: 625.26 lei - 15%
Preț: 616.95 lei - 15%
Preț: 613.49 lei - 15%
Preț: 619.45 lei -
Preț: 375.07 lei
Preț: 367.85 lei
Nou
Puncte Express: 552
Preț estimativ în valută:
65.12€ • 75.72$ • 56.90£
65.12€ • 75.72$ • 56.90£
Carte tipărită la comandă
Livrare economică 22 ianuarie-05 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387945781
ISBN-10: 0387945784
Pagini: 188
Ilustrații: VIII, 188 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.28 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387945784
Pagini: 188
Ilustrații: VIII, 188 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.28 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. General discussions on unbiased estimation.- 1.1. Formulation.- 1.2. Undominated case.- 1.3. The support depending on the parameter.- 1.4. Discrete parameter set.- 1.5. Discontinuous and non-differentiable density.- 1.6. Non square-integrable likelihood ratio.- 1.7. Asymptotic theory for non-regular cases.- 1.8. Asymptotic Bayes posterior distribution of the parameter in non-regular cases.- 1.9. Overview.- 2. Lower bound for the variance of unbiased estimators.- 2.1. Minimum variance.- 2.2. Bhattacharyya type bound for the variance of unbiased estimators in non-regular cases.- 2.3. Lower bound for the variance of unbiased estimators for one-directional distributions.- 2.4. A second type of one-directional distribution and the lower bound for the variance of unbiased estimators.- 2.5. Locally minimum variance unbiased estimation.- 3. Amounts of information and the minimum variance unbiased estimation.- 3.1. Fisher information and the minimum variance unbiased estimation.- 3.2. Examples on unbiased estimators with zero variance.- 3.3. A definition of the generalized amount of information.- 3.4. Examples on the generalized amount of information.- 3.5. Order of consistency.- 4. Loss of information associated with the order statistics and related estimators in the case of double exponential distributions.- 4.1. Loss of information of the order statistics.- 4.2. The asymptotic loss of information.- 4.3. Proofs of Theorems in Section 4.2.- 4.4. Discretized likelihood estimation.- 4.5. Second order asymptotic comparison of the discretized likelihood estimator with others.- 5. Estimation of a common parameter for pooled samples from the uniform distributions and the double exponential distributions.- 5.1. Estimators of a common parameter for the uniform distributions.- 5.2. Comparison of the quasi-MLE, the weighted estimator and others for the uniform distributions.- 5.3. Estimators of a common parameter for the double exponential distributions.- 5.4. Second order asymptotic comparison of the estimators for the double exponential distributions.- 6. Higher order asymptotics in estimation for two-sided Weibull type distributions.- 6.1. The 2?-th order asymptotic bound for the distribution of 2?-th order AMU estimators.- 6.2. Proofs of Lemmas and Theorem in Section 6.1.- 6.3. The 2?-th order asymptotic distribution of the maximum likelihood estimator.- 6.4. The amount of the loss of asymptotic information of the maximum likelihood estimator.- 7. “3/2-th” and second order asymptotics of the generalized Bayes estimators for a family of truncated distributions.- 7.1. Definitions and assumptions.- 7.2. Generalized Bayes estimators for a family of truncated distributions.- 7.3. Second order asymptotic bound in symmetrically truncated densities.- 7.4. Maximum probability estimation.- 7.5. Examples.- 7.6. Some remarks.- Supplement. The bound for the asymptotic distribution of estimators when the maximum order of consistency depends on the parameter.- 5.1. Order of consistency depending on the parameter.- 5.2. The bound for the asymptotic distribution of AMU estimators in the autoregressive process.- References.