A Probabilistic Theory of Pattern Recognition: Stochastic Modelling and Applied Probability, cartea 31
Autor Luc Devroye, Laszlo Györfi, Gabor Lugosien Limba Engleză Hardback – 4 apr 1996
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 581.07 lei 6-8 săpt. | |
| Springer – 22 noi 2013 | 581.07 lei 6-8 săpt. | |
| Hardback (1) | 773.79 lei 6-8 săpt. | |
| Springer – 4 apr 1996 | 773.79 lei 6-8 săpt. |
Din seria Stochastic Modelling and Applied Probability
- 15%
Preț: 455.81 lei - 17%
Preț: 502.40 lei - 18%
Preț: 1075.12 lei - 18%
Preț: 910.58 lei - 18%
Preț: 915.43 lei - 15%
Preț: 617.57 lei - 15%
Preț: 618.50 lei - 15%
Preț: 612.55 lei - 18%
Preț: 762.90 lei - 15%
Preț: 608.59 lei - 18%
Preț: 704.96 lei - 18%
Preț: 754.70 lei - 18%
Preț: 774.25 lei - 18%
Preț: 764.40 lei - 15%
Preț: 618.34 lei - 15%
Preț: 627.93 lei - 15%
Preț: 616.95 lei - 18%
Preț: 917.56 lei - 15%
Preț: 620.23 lei - 18%
Preț: 910.71 lei - 15%
Preț: 619.75 lei - 49%
Preț: 456.98 lei - 35%
Preț: 521.31 lei - 18%
Preț: 1178.69 lei - 18%
Preț: 716.49 lei - 32%
Preț: 663.10 lei -
Preț: 475.79 lei - 40%
Preț: 410.77 lei -
Preț: 373.40 lei - 20%
Preț: 546.97 lei - 15%
Preț: 616.45 lei - 18%
Preț: 860.37 lei - 18%
Preț: 1075.73 lei - 15%
Preț: 620.07 lei
Preț: 773.79 lei
Preț vechi: 943.66 lei
-18%
Puncte Express: 1161
Preț estimativ în valută:
136.82€ • 161.31$ • 118.09£
136.82€ • 161.31$ • 118.09£
Carte tipărită la comandă
Livrare economică 19 martie-02 aprilie
Specificații
ISBN-13: 9780387946184
ISBN-10: 0387946187
Pagini: 638
Ilustrații: XV, 638 p.
Dimensiuni: 155 x 235 x 41 mm
Greutate: 1.1 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
ISBN-10: 0387946187
Pagini: 638
Ilustrații: XV, 638 p.
Dimensiuni: 155 x 235 x 41 mm
Greutate: 1.1 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Preface * Introduction * The Bayes Error * Inequalities and alternate
distance measures * Linear discrimination * Nearest neighbor rules *
Consistency * Slow rates of convergence Error estimation * The regular
histogram rule * Kernel rules Consistency of the k-nearest neighbor
rule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-
Chervonenkis theory * Lower bounds for empirical classifier selection
* The maximum likelihood principle * Parametric classification *
Generalized linear discrimination * Complexity regularization *
Condensed and edited nearest neighbor rules * Tree classifiers * Data-
dependent partitioning * Splitting the data * The resubstitution
estimate * Deleted estimates of the error probability * Automatic
kernel rules * Automatic nearest neighbor rules * Hypercubes and
discrete spaces * Epsilon entropy and totally bounded sets * Uniform
laws of large numbers * Neural networks * Other error estimates *
Feature extraction * Appendix * Notation * References * Index
distance measures * Linear discrimination * Nearest neighbor rules *
Consistency * Slow rates of convergence Error estimation * The regular
histogram rule * Kernel rules Consistency of the k-nearest neighbor
rule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-
Chervonenkis theory * Lower bounds for empirical classifier selection
* The maximum likelihood principle * Parametric classification *
Generalized linear discrimination * Complexity regularization *
Condensed and edited nearest neighbor rules * Tree classifiers * Data-
dependent partitioning * Splitting the data * The resubstitution
estimate * Deleted estimates of the error probability * Automatic
kernel rules * Automatic nearest neighbor rules * Hypercubes and
discrete spaces * Epsilon entropy and totally bounded sets * Uniform
laws of large numbers * Neural networks * Other error estimates *
Feature extraction * Appendix * Notation * References * Index