Applied Functional Analysis: a: Stochastic Modelling and Applied Probability, cartea 3
Autor Alampallam V. Balakrishnanen Limba Engleză Paperback – 12 dec 2012
Din seria Stochastic Modelling and Applied Probability
- 17%
Preț: 502.79 lei - 18%
Preț: 774.25 lei - 18%
Preț: 866.14 lei - 15%
Preț: 627.45 lei - 18%
Preț: 759.68 lei - 18%
Preț: 1078.74 lei - 15%
Preț: 457.69 lei - 18%
Preț: 910.58 lei - 18%
Preț: 915.43 lei - 15%
Preț: 617.57 lei - 15%
Preț: 618.50 lei - 15%
Preț: 612.55 lei - 18%
Preț: 762.90 lei - 15%
Preț: 608.59 lei - 18%
Preț: 704.96 lei - 18%
Preț: 754.70 lei - 15%
Preț: 570.54 lei - 15%
Preț: 618.34 lei - 15%
Preț: 627.93 lei - 15%
Preț: 616.95 lei - 18%
Preț: 917.56 lei - 18%
Preț: 910.71 lei - 18%
Preț: 773.79 lei - 15%
Preț: 619.75 lei - 20%
Preț: 508.18 lei - 20%
Preț: 629.19 lei - 18%
Preț: 1178.69 lei - 18%
Preț: 716.49 lei - 24%
Preț: 753.29 lei -
Preț: 475.79 lei - 24%
Preț: 653.19 lei -
Preț: 373.40 lei - 20%
Preț: 547.39 lei - 15%
Preț: 622.42 lei
Preț: 620.23 lei
Preț vechi: 729.69 lei
-15% Nou
Puncte Express: 930
Preț estimativ în valută:
109.75€ • 128.70$ • 96.39£
109.75€ • 128.70$ • 96.39£
Carte tipărită la comandă
Livrare economică 04-18 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461258674
ISBN-10: 1461258677
Pagini: 392
Ilustrații: XIII, 373 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.55 kg
Ediția:2nd ed. 1981
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
ISBN-10: 1461258677
Pagini: 392
Ilustrații: XIII, 373 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.55 kg
Ediția:2nd ed. 1981
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Basic Properties of Hilbert Spaces.- 1.0 Introduction.- 1.1 Basic Definitions.- 1.2 Examples of Hilbert Spaces.- 1.3 Hilbert Spaces from Hilbert Spaces.- 1.4 Convex Sets and Projections.- 1.5 Orthogonality and Orthonormal Bases.- 1.6 Continuous Linear Functionals.- 1.7 Riesz Representation Theorem.- 1.8 Weak Convergence.- 1.9 Nonlinear Functionals and Generalized Curves.- 1.10 The Hahn-Banach Theorem.- 2 Convex Sets and Convex Programming.- 2.0 Introduction.- 2.1 Elementary Notions.- 2.2 Support Functional of a Convex Set.- 2.3 Minkowski Functional.- 2.4 The Support Mapping.- 2.5 Separation Theorem.- 2.6 Application to Convex Programming.- 2.7 Generalization to Infinite Dimensional Inequalities.- 2.8 A Fundamental Result of Game Theory: Minimax Theorem.- 2.9 Application: Theorem of Farkas.- 3 Functions, Transformations, Operators.- 3.0 Introduction.- 3.1 Linear Operators and their Adjoints.- 3.2 Spectral Theory of Operators.- 3.3 Spectral Theory of Compact Operators.- 3.4 Operators on Separable Hilbert Spaces.- 3.5 L2 Spaces over Hilbert Spaces.- 3.6 Multilinear Forms.- 3.7 Nonlinear Volterra Operators.- 4 Semigroups of Linear Operators.- 4.0 Introduction.- 4.1 Definitions and General Properties of Semigroups.- 4.2 Generation of Semigroups.- 4.3 Semigroups over Hilbert Spaces: Dissipative Semigroups.- 4.4 Compact Semigroups.- 4.5 Analytic (Holomorphic) Semigroups.- 4.6 Elementary Examples of Semigroups.- 4.7 Extensions.- 4.8 Differential Equations: Cauchy Problem.- 4.9 Controllability.- 4.10 State Reduction: Observability.- 4.11 Stability and Stabilizability.- 4.12 Boundary Input: An Example.- 4.13 Evolution Equations.- 5 Optimal Control Theory.- 5.0 Introduction.- 5.1 Preliminaries.- 5.2 Linear Quadratic Regulator Problem.- 5.3 Linear Quadratic Regulator Problem: Infinite Time Interval.- 5.4 Hard Constraints.- 5.5 Final Value Control.- 5.6 Time Optimal Control Problem.- 6 Stochastic Optimization Theory.- 6.0 Introduction.- 6.1 Preliminaries.- 6.2 Measures on Cylinder Sets.- 6.3 Characteristic Functions and Countable Additivity.- 6.4 Weak Random Variables.- 6.5 Random Variables.- 6.6 White Noise.- 6.7 Differential Systems.- 6.8 The Filtering Problem.- 6.9 Stochastic Control.- 6.10 Physical Random Variables.- 6.11 Radon-Nikodym Derivatives.- 6.12 Nonlinear Stochastic Equations.