Nonparametric Regression Analysis of Longitudinal Data: Lecture Notes in Statistics, cartea 46
Autor Hans-Georg Mülleren Limba Engleză Paperback – 26 sep 1988
Din seria Lecture Notes in Statistics
- 15%
Preț: 607.49 lei -
Preț: 371.20 lei - 15%
Preț: 496.25 lei - 18%
Preț: 1183.54 lei - 20%
Preț: 607.59 lei - 18%
Preț: 909.21 lei - 15%
Preț: 609.08 lei - 15%
Preț: 633.43 lei -
Preț: 425.11 lei - 15%
Preț: 614.90 lei - 18%
Preț: 907.64 lei - 15%
Preț: 615.97 lei - 15%
Preț: 616.64 lei -
Preț: 368.79 lei - 15%
Preț: 618.19 lei - 18%
Preț: 1004.42 lei -
Preț: 371.97 lei - 18%
Preț: 906.03 lei - 15%
Preț: 608.79 lei -
Preț: 368.59 lei - 15%
Preț: 608.90 lei - 15%
Preț: 611.12 lei -
Preț: 378.78 lei - 15%
Preț: 675.70 lei - 15%
Preț: 619.75 lei - 15%
Preț: 620.23 lei -
Preț: 367.85 lei - 15%
Preț: 611.74 lei - 15%
Preț: 622.91 lei -
Preț: 366.19 lei - 15%
Preț: 609.85 lei - 15%
Preț: 623.70 lei -
Preț: 364.56 lei - 15%
Preț: 623.52 lei - 15%
Preț: 622.59 lei - 18%
Preț: 750.16 lei - 15%
Preț: 616.45 lei - 18%
Preț: 1059.82 lei - 15%
Preț: 618.34 lei -
Preț: 370.10 lei - 15%
Preț: 615.66 lei - 15%
Preț: 625.26 lei - 15%
Preț: 616.95 lei - 15%
Preț: 613.49 lei - 15%
Preț: 619.45 lei -
Preț: 375.07 lei
Preț: 613.18 lei
Preț vechi: 721.38 lei
-15% Nou
Puncte Express: 920
Preț estimativ în valută:
108.52€ • 127.27$ • 95.15£
108.52€ • 127.27$ • 95.15£
Carte tipărită la comandă
Livrare economică 24 ianuarie-07 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387968445
ISBN-10: 038796844X
Pagini: 369
Ilustrații: XIV, 369 p.
Dimensiuni: 170 x 244 x 11 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 038796844X
Pagini: 369
Ilustrații: XIV, 369 p.
Dimensiuni: 170 x 244 x 11 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- 2. Longitudinal data and regression models.- 2.1 Longitudinal data.- 2.2 Regression models.- 2.3 Longitudinal growth curves.- 3. Nonparametric regression methods.- 3.1 Kernel estimates.- 3.2 Weighted local least squares estimates.- 3.3 Smoothing splines.- 3.4 Orthogonal series estimates.- 3.5 Discussion.- 3.6 Heart pacemaker study.- 4. Kernel and weighted local least squares methods.- 4.1 Mean Squared Error of kernel estimates for curves and derivatives.- 4.2 Asymptotic normality.- 4.3 Boundary effects and Integrated Mean Squared Error.- 4.4 Muscular activity as a function of force.- 4.5 Finite sample comparisons.- 4.6 Equivalence of weighted local regression and kernel estimators.- 5. Optimization of kernel and weighted local regression methods.- 5.1 Optimal designs.- 5.2 Choice of kernel functions.- 5.3 Minimum variance kernels.- 5.4 Optimal kernels.- 5.5 Finite evaluation of higher order kernels.- 5.6 Further criteria for kernels.- 5.7 A hierarchy of smooth optimum kernels.- 5.8 Smooth optimum boundary kernels.- 5.9 Choice of the order of kernels for estimating b? functions.- 6. Multivariate kernel estimators.- 6.1 Definiton and MSE/IMSE.- 6.2 Boundary effects and dimension problem.- 6.3 Rectangular designs and product kernels.- 7. Choice of global and local bandwidths.- 7.1 Overview.- 7.2 Pilot methods.- 7.3 Cross-validation and related methods.- 7.4 Bandwidth choice for derivatives.- 7.5 Confidence intervals for anthropokinetic data.- 7.6 Local versus global bandwidth choice.- 7.7 Weak convergence of a local bandwidth process.- 7.8 Practical local bandwidth choice.- 8. Longitudinal parameters.- 8.1 Comparison of samples of curves.- 8.2 Definition of longitudinal parameters and consistency.- 8.3 Limit distributions.- 9. Nonparametric estimationof the human height growth curve.- 9.1 Introduction.- 9.2 Choice of kernels and bandwidths.- 9.3 Comparison of parametric and nonparametric regression.- 9.4 Estimation of growth velocity and acceleration.- 9.5 Longitudinal parameters for growth curves.- 9.6 Growth spurts.- 10. Further applications.- 10.1 Monitoring and prognosis based on longitudinal medical data.- 10.2 Estimation of heteroscedasticity and prediction intervals.- 10.3 Further developments.- 11. Consistency properties of moving weighted averages.- 11.1 Local weak consistency.- 11.2 Uniform consistency.- 12. FORTRAN routines for kernel smoothing and differentiation.- 12.1 Structure of main routines KESMO and KERN.- 12.2 Listing of programs.- References.