Natural Function Algebras: Universitext
Autor Charles E. Rickarten Limba Engleză Paperback – 31 oct 1979
Din seria Universitext
-
Preț: 417.64 lei - 15%
Preț: 522.85 lei -
Preț: 469.31 lei -
Preț: 470.62 lei -
Preț: 348.81 lei - 15%
Preț: 487.81 lei -
Preț: 442.01 lei - 15%
Preț: 449.98 lei - 15%
Preț: 507.50 lei - 15%
Preț: 558.32 lei - 20%
Preț: 319.13 lei -
Preț: 468.74 lei -
Preț: 468.38 lei -
Preț: 405.96 lei - 19%
Preț: 425.96 lei -
Preț: 371.20 lei - 15%
Preț: 476.16 lei -
Preț: 371.93 lei - 15%
Preț: 495.81 lei -
Preț: 443.31 lei -
Preț: 367.85 lei -
Preț: 371.93 lei -
Preț: 387.27 lei -
Preț: 374.91 lei -
Preț: 370.26 lei -
Preț: 465.60 lei - 19%
Preț: 464.46 lei -
Preț: 392.51 lei - 15%
Preț: 450.29 lei - 15%
Preț: 456.60 lei -
Preț: 376.75 lei - 17%
Preț: 391.14 lei - 15%
Preț: 462.87 lei - 15%
Preț: 455.18 lei -
Preț: 438.87 lei -
Preț: 368.05 lei -
Preț: 373.03 lei - 20%
Preț: 490.60 lei -
Preț: 378.05 lei -
Preț: 365.45 lei -
Preț: 368.79 lei - 15%
Preț: 572.89 lei - 15%
Preț: 675.40 lei - 15%
Preț: 513.20 lei - 15%
Preț: 450.46 lei - 15%
Preț: 627.01 lei - 15%
Preț: 618.64 lei - 15%
Preț: 579.03 lei - 15%
Preț: 479.94 lei - 15%
Preț: 565.69 lei
Preț: 371.20 lei
Puncte Express: 557
Preț estimativ în valută:
65.62€ • 78.70$ • 57.05£
65.62€ • 78.70$ • 57.05£
Carte tipărită la comandă
Livrare economică 13-27 martie
Specificații
ISBN-13: 9780387904498
ISBN-10: 0387904492
Pagini: 240
Ilustrații: XIV, 240 p. 1 illus.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1979
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
ISBN-10: 0387904492
Pagini: 240
Ilustrații: XIV, 240 p. 1 illus.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1979
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. The Category of Pairs.- § 1. Pairs and systems.- § 2. Morphisms and extensions of pairs.- § 3. Natural systems.- § 4. Products of pairs.- § 5. Examples and remarks.- II. Convexity and Naturality.- § 6. a-convex hulls. Hull-kernel topology.- § 7. a-convexity in a natural pair [?, a].- § 8. Closure operations.- § 9. Convexity and extensions.- §10. Natural extensions.- §11. Examples.- III. The Šilov Boundary and Local Maximum Principle.- §12. Independent points.- §13. The Šilov boundary of a pair.- §14. A local maximum principle for natural systems.- §15. Applications of the local maximum principle.- IV. Holomorphic Functions.- §16. Presheaves of continuous functions.- §17. Local extensions, ?-holomo?phic functions.- §18. Holomorphic maps.- §19. Examples and remarks.- V. Maximum Properties of Holomorphic Functions.- §20. A local maximum principle for holomorphic functions.- §21. Holomorphic peak sets.- §22. a-presheaves.- §23. A lemma of Glicksberg.- §24. Maximal a-presheaves.- VI. Subharmonic Functions.- §25. Plurisubharmonic functions in ?n.- §26. Definitions. a-subharmonic functions.- §27. Basic properties of a-subharmonic functions.- §28. Plurisubharmonicity.- §29. Maximum properties.- §30. Integral representations.- §31. Characterization of a-harmonic functions.- §32. Hartog’s functions.- VII. Varieties.- §33. Varieties associated with an a-presheaf.- §34. Convexity properties.- §35. Generalizations of some results of Glicksberg.- §36. Continuous families of hypersurfaces.- §37. Remarks.- VIII. Holomorphic and Subharmonic Convexity.- §38. Convexity with respect to an a-presheaf.- §39. Properties of subharmonic convexity.- §40. Naturality properties.- §41. Holomorphic implied by subharmonic convexity.- §42. Localproperties.- §43. Remarks and an example.- IX. [?, a]-Domains.- §44. Definitions.- §45. Distance functions.- §46. Holomorphic functions.- §47. Relative completeness and naturality.- X. Holomorphic Extensions of [?, a]-Domains.- §48. Morphisms and extensions. Domains of holomorphy.- §49. Existence of maximal extensions.- §50. Properties of maximal domains.- §51. Remarks.- XI. Holomorphy Theory for Dual Pairs of Vector Spaces.- §52. Generalized polynomials and holomorphic functions in a CLTS.- §53. Dual pairs ?E, F?.- §54. Holomorphic functions in a dual pair.- §55. Arens holomorphic functions.- §56. Canonical representation of dual pairs.- §57. Derivatives.- §58. Naturality.- XII. ?E, F? -Domains of Holomorphy.- §59. Holomorphic functions in ?E, F?-domains.- §60. Subdomains determined by a subspace of F.- §61. Envelopes of holomorphy.- §62. Series expansions.- §63. The finite dimensional component of a domain of holomorphy.- §64. The algebra of holomorphic functions.- §65. Holomorphic convexity and naturality.- §66. A Cartan-Thullen theorem.- XIII. Dual Pair Theory Applied to [?, a]-Domains.- §67. The dual pair extension of [?, a]. A-domains.- §68. Germ-valued functions.- §69. Topologies for [0]?.- §70. Naturality of algebras of germ-valued functions.- XIV. Holomorphic Extensions of ?-Domains.- §71. Extension relative to germ-valued functions.- §72. Uniform families of extensions.- §73. Pseudoextensions.- §74. Naturality properties.- Index of Symbols.- General Index.