Sheaf Theory: Graduate Texts in Mathematics, cartea 170
Autor Glen E. Bredonen Limba Engleză Paperback – 28 sep 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 490.56 lei 6-8 săpt. | |
| Springer – 28 sep 2012 | 490.56 lei 6-8 săpt. | |
| Hardback (1) | 523.55 lei 6-8 săpt. | |
| Springer – 24 ian 1997 | 523.55 lei 6-8 săpt. |
Din seria Graduate Texts in Mathematics
- 13%
Preț: 388.00 lei - 15%
Preț: 466.31 lei - 15%
Preț: 395.04 lei -
Preț: 481.70 lei - 15%
Preț: 533.99 lei - 15%
Preț: 383.17 lei - 15%
Preț: 394.35 lei - 15%
Preț: 392.71 lei - 15%
Preț: 394.04 lei - 15%
Preț: 392.75 lei -
Preț: 445.45 lei - 15%
Preț: 388.38 lei -
Preț: 260.78 lei -
Preț: 542.93 lei - 15%
Preț: 576.36 lei -
Preț: 450.27 lei -
Preț: 432.82 lei - 17%
Preț: 396.00 lei -
Preț: 391.02 lei - 15%
Preț: 571.96 lei - 15%
Preț: 569.57 lei -
Preț: 381.34 lei - 15%
Preț: 424.86 lei - 15%
Preț: 514.23 lei - 15%
Preț: 541.61 lei -
Preț: 374.48 lei - 15%
Preț: 460.83 lei -
Preț: 481.34 lei - 15%
Preț: 563.78 lei -
Preț: 434.38 lei -
Preț: 373.03 lei - 15%
Preț: 487.42 lei -
Preț: 444.79 lei - 40%
Preț: 344.12 lei - 15%
Preț: 573.07 lei -
Preț: 372.50 lei -
Preț: 442.58 lei - 18%
Preț: 867.22 lei - 15%
Preț: 561.88 lei - 15%
Preț: 566.14 lei - 15%
Preț: 460.53 lei - 15%
Preț: 575.12 lei -
Preț: 433.74 lei -
Preț: 457.36 lei
Preț: 490.56 lei
Preț vechi: 577.13 lei
-15%
Puncte Express: 736
Preț estimativ în valută:
86.72€ • 103.40$ • 75.22£
86.72€ • 103.40$ • 75.22£
Carte tipărită la comandă
Livrare economică 17-31 martie
Specificații
ISBN-13: 9781461268543
ISBN-10: 1461268540
Pagini: 524
Ilustrații: XI, 504 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.73 kg
Ediția:2nd ed. 1997. Softcover reprint of the original 2nd ed. 1997
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461268540
Pagini: 524
Ilustrații: XI, 504 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.73 kg
Ediția:2nd ed. 1997. Softcover reprint of the original 2nd ed. 1997
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
I Sheaves and Presheaves.- Definitions.- 2 Homomorphisms, subsheaves, and quotient sheaves.- 3 Direct and inverse images.- 4 Cohomomorphisms.- 5 Algebraic constructions.- 6 Supports.- 7 Classical cohomology theories.- Exercises.- II Sheaf Cohomology.- 1 Differential sheaves and resolutions.- 2 The canonical resolution and sheaf cohomology.- 3 Injective sheaves.- 4 Acyclic sheaves.- 5 Flabby sheaves.- 6 Connected sequences of functors.- 7 Axioms for cohomology and the cup product.- 8 Maps of spaces.- 9 ?-soft and ?-fine sheaves.- 10 Subspaces.- 11 The Vietoris mapping theorem and homotopy invariance.- 12 Relative cohomology.- 13 Mayer-Vietoris theorems.- 14 Continuity.- 15 The Künneth and universal coefficient theorems.- 16 Dimension.- 17 Local connectivity.- 18 Change of supports; local cohomology groups.- 19 The transfer homomorphism and the Smith sequences.- 20 Steenrod’s cyclic reduced powers.- 21 The Steenrod operations.- Exercises.- III Comparison with Other Cohomology Theories.-1 Singular cohomology.- 2 Alexander-Spanier cohomology.- 3 de Rham cohomology.- 4 ?ech cohomology.- Exercises.- IV Applications of Spectral Sequences.- 1 The spectral sequence of a differential sheaf.- 2 The fundamental theorems of sheaves.- 3 Direct image relative to a support family.- 4 The Leray sheaf.- 5 Extension of a support family by a family on the base space.- 6 The Leray spectral sequence of a map.- 7 Fiber bundles.- 8 Dimension.- 9 The spectral sequences of Borel and Cartan.- 10 Characteristic classes.- 11 The spectral sequence of a filtered differential sheaf.- 12 The Fary spectral sequence.- 13 Sphere bundles with singularities.- 14 The Oliver transfer and the Conner conjecture.- Exercises.- V Borel-Moore Homology.- 1 Cosheaves.- 2 The dual of a differential cosheaf.- 3 Homology theory.- 4 Maps of spaces.- 5 Subspaces and relative homology.- 6 The Vietoris theorem, homotopy, and covering spaces.- 7 The homology sheaf of a map.- 8 The basic spectral sequences.- 9 Poincaré duality.- 10 The cap product.- 11 Intersection theory.- 12 Uniqueness theorems.- 31 Uniqueness theorems for maps and relative homology.- 14 The Künneth formula.- 15 Change of rings.- 16 Generalized manifolds.- 17 Locally homogeneous spaces.- 18 Homological fibrations and p-adic transformation groups.- 19 The transfer homomorphism in homology.- 20 Smith theory in homology.- Exercises.- VI Cosheaves and ?ech Homology.- 1 Theory of cosheaves.- 2 Local triviality.- 3 Local isomorphisms.- 4 Cech homology.- 5 The reflector.- 6 Spectral sequences.- 7 Coresolutions.- 8 Relative ?ech homology.- 9 Locally paracompact spaces.- 10 Borel-Moore homology.- 11 Modified Borel-Moore homology.- 12 Singular homology.- 13 Acyclic coverings.- 14 Applications to maps.- Exercises.- A Spectral Sequences.- 1 The spectral sequence of a filtered complex.- 2 Double complexes.- 3 Products.- 4 Homomorphisms.- B Solutions to Selected Exercises.- Solutions for Chapter I.- Solutions for Chapter II.- Solutions for Chapter III.- Solutions for Chapter IV.- Solutions for Chapter V.- Solutions for Chapter VI.- List of Symbols.- List of Selected Facts.