Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I: Lecture Notes in Computer Science, cartea 12901
Editat de Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Esserten Limba Engleză Paperback – 23 sep 2021
Part I: image segmentation
Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning
Part III: machine learning - advances in machine learning theory; machine learning - attention models; machine learning - domain adaptation; machine learning - federated learning; machine learning - interpretability / explainability; and machine learning - uncertainty
Part IV: image registration; image-guided interventions and surgery; surgical data science; surgical planning and simulation; surgical skill and work flow analysis; and surgical visualization and mixed, augmented and virtual reality
Part V: computer aided diagnosis; integration of imaging with non-imaging biomarkers; and outcome/disease prediction
Part VI: image reconstruction; clinical applications - cardiac; and clinical applications - vascular
Part VII: clinical applications - abdomen; clinical applications - breast; clinical applications - dermatology; clinical applications - fetal imaging; clinical applications - lung; clinical applications - neuroimaging - brain development; clinical applications - neuroimaging - DWI and tractography; clinical applications - neuroimaging - functional brain networks; clinical applications - neuroimaging – others; and clinical applications - oncology
Part VIII: clinical applications - ophthalmology; computational (integrative) pathology; modalities - microscopy; modalities - histopathology; and modalities - ultrasound
*The conference was held virtually.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (8) | 637.96 lei 6-8 săpt. | |
| Springer International Publishing – 23 sep 2021 | 637.96 lei 6-8 săpt. | |
| Springer International Publishing – 24 sep 2021 | 638.90 lei 6-8 săpt. | |
| Springer International Publishing – 24 sep 2021 | 639.70 lei 6-8 săpt. | |
| Springer International Publishing – 23 sep 2021 | 640.65 lei 6-8 săpt. | |
| Springer International Publishing – 24 sep 2021 | 696.46 lei 6-8 săpt. | |
| Springer International Publishing – 24 sep 2021 | 701.06 lei 6-8 săpt. | |
| Springer International Publishing – 24 sep 2021 | 757.50 lei 6-8 săpt. | |
| Springer International Publishing – 23 sep 2021 | 807.88 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 390.18 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 461.77 lei - 20%
Preț: 527.36 lei - 20%
Preț: 497.04 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.14 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.06 lei - 20%
Preț: 390.69 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 390.35 lei - 20%
Preț: 391.20 lei - 20%
Preț: 392.64 lei - 20%
Preț: 389.90 lei - 20%
Preț: 639.72 lei - 20%
Preț: 461.65 lei - 20%
Preț: 462.05 lei - 15%
Preț: 388.50 lei - 5%
Preț: 516.27 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 535.77 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 400.17 lei - 20%
Preț: 403.00 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 807.88 lei
Preț vechi: 1009.86 lei
-20% Nou
Puncte Express: 1212
Preț estimativ în valută:
142.94€ • 166.52$ • 124.82£
142.94€ • 166.52$ • 124.82£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030871925
ISBN-10: 3030871924
Pagini: 746
Ilustrații: XXXVII, 746 p. 252 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.08 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
ISBN-10: 3030871924
Pagini: 746
Ilustrații: XXXVII, 746 p. 252 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.08 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
Cuprins
Image Segmentation.- Noisy Labels are Treasure: Mean-Teacher-Assisted Confident Learning for Hepatic Vessel Segmentation.- TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation.- Pancreas CT Segmentation by Predictive Phenotyping.- Medical Transformer: Gated Axial-Attention for Medical Image Segmentation.- Anatomy-Constrained Contrastive Learning for Synthetic Segmentation without Ground-truth.- Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels.- Multi-phase Liver Tumor Segmentation with Spatial Aggregation and Uncertain Region Inpainting.- Convolution-Free Medical Image Segmentation using Transformer Networks.- Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks.- A Multi-Branch Hybrid Transformer Network for Corneal Endothelial Cell Segmentation.- TransBTS: Multimodal Brain Tumor Segmentation Using Transformer.- Automatic Polyp Segmentation via Multi-scale Subtraction Network.- Patch-Free 3D Medical Image Segmentation Driven by Super-Resolution Technique and Self-Supervised Guidance.- Progressively Normalized Self-Attention Network for Video Polyp Segmentation.- SGNet: Structure-aware Graph-based Network for Airway Semantic Segmentation.- NucMM Dataset: 3D Neuronal Nuclei Instance Segmentation at Sub-Cubic Millimeter Scale.- AxonEM Dataset: 3D Axon Instance Segmentation of Brain Cortical Regions.- Improved Brain Lesion Segmentation with Anatomical Priors from Healthy Subjects.- CarveMix: A Simple Data Augmentation Method for Brain Lesion Segmentation.- Boundary-aware Transformers for Skin Lesion Segmentation.- A Topological-Attention ConvLSTM Network and Its Application to EM Images.- BiX-NAS: Searching Efficient Bi-directional Architecture for Medical Image Segmentation.- Multi-Task, Multi-Domain Deep Segmentation with Shared Representations and Contrastive Regularization for Sparse Pediatric Datasets.- TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee Topology Preservation in Segmentations.- Learning Consistency- and Discrepancy-Context for 2D Organ Segmentation.- Partial-supervised Learning for Vessel Segmentation in Ocular Images.- Unsupervised Network Learning for Cell Segmentation.- MT-UDA: Towards Unsupervised Cross-Modality Medical Image Segmentation with Limited Source Labels.- Context-aware virtual adversarial training for anatomically-plausible segmentation.- Interactive segmentation via deep learning and B-spline explicit active surfaces.- Multi-Compound Transformer for Accurate Biomedical Image Segmentation.- kCBAC-Net: Deeply Supervised Complete Bipartite Networks with Asymmetric Convolutions for Medical Image Segmentation.- Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography.- Coarse-to-fine Segmentation of Organs at Risk in Nasopharyngeal Carcinoma Radiotherapy.- Joint Segmentation and Quantification of Main Coronary Vessels Using Dual-branch Multi-scale Attention Network.- A Spatial Guided Self-supervised Clustering Network for Medical Image Segmentation.- Comprehensive Importance-based Selective Regularization for Continual Segmentation Across Multiple Sites.- ReSGAN: Intracranial Hemorrhage Segmentation with Residuals of Synthetic Brain CT Scans.- Refined Local-imbalance-based Weight for Airway Segmentation in CT.- Selective Learning from External Data for CT Image Segmentation.- Projective Skip-Connections for Segmentation Along a Subset of Dimensions in Retinal OCT.- MouseGAN: GAN-Based Multiple MRI Modalities Synthesis and Segmentation for Mouse Brain Structures.- Style Curriculum Learning for Robust Medical Image Segmentation.- Towards Efficient Human-Machine Collaboration: Real-Time Correction Effort Prediction for Ultrasound Data Acquisition.- Residual Feedback Network for Breast Lesion Segmentation in Ultrasound Image.- Learning to Address Intra-segment Misclassification in Retinal Imaging.- Flip Learning: Erase to Segment.- DC-Net: Dual Context Network for 2D Medical Image Segmentation.- LIFE: A Generalizable Autodidactic Pipeline for 3D OCT-A Vessel Segmentation.- Superpixel-guided Iterative Learning from Noisy Labels for Medical Image Segmentation.- A hybrid attention ensemble framework for zonal prostate segmentation.- 3D-UCaps: 3D Capsules Unet for Volumetric Image Segmentation.- HRENet: A Hard Region Enhancement Network for Polyp Segmentation.- A Novel Hybrid Convolutional Neural Network for Accurate Organ Segmentation in 3D Head and Neck CT Images.- TumorCP: A Simple but Effective Object-Level Data Augmentation for Tumor Segmentation.- Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation.- Hybrid graph convolutional neural networks for anatomical segmentation.- RibSeg Dataset and Strong Point Cloud Baselines for Rib Segmentation from CT Scans.- Hierarchical Self-Supervised Learning for Medical Image Segmentation Based on Multi-Domain Data Aggregation.- CCBANet: Cascading Context and BalancingAttention for Polyp Segmentation.- Point-Unet: A Context-aware Point-based Neural Network for Volumetric Segmentation.- TUN-Det: A Novel Network for Thyroid Ultrasound Nodule Detection.- Distilling effective supervision for robust medical image segmentation with noisy labels.- On the relationship between calibrated predictors and unbiased volume estimation.- High-resolution segmentation of lumbar vertebrae from conventional thick slice MRI.- Shallow Attention Network for Polyp Segmentation.- A Line to Align: Deep Dynamic Time Warping for Retinal OCT Segmentation.- Learnable Oriented-Derivative Network for Polyp Segmentation.- LambdaUNet: 2.5D Stroke Lesion Segmentation of Diffusion-weighted MR Images.