Machine Learning and Knowledge Extraction: First IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference, CD-MAKE 2017, Reggio, Italy, August 29 – September 1, 2017, Proceedings: Lecture Notes in Computer Science, cartea 10410
Editat de Andreas Holzinger, Peter Kieseberg, A Min Tjoa, Edgar Weipplen Limba Engleză Paperback – 24 aug 2017
The 24 revised full papers presented were carefully reviewed and selected for inclusion in this volume. The papers deal with fundamental questions and theoretical aspects and cover a wide range of topics in the field of machine learning and knowledge extraction. They are organized in the following topical sections: MAKE topology; MAKE smart factory; MAKE privacy; MAKE VIS; MAKE AAL; and MAKE semantics.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (6) | 324.19 lei 6-8 săpt. | |
| Springer International Publishing – 24 aug 2018 | 324.19 lei 6-8 săpt. | |
| Springer International Publishing – 24 aug 2017 | 324.35 lei 6-8 săpt. | |
| Springer International Publishing – 23 aug 2019 | 326.24 lei 6-8 săpt. | |
| Springer International Publishing – 12 aug 2022 | 570.44 lei 6-8 săpt. | |
| Springer – 12 aug 2021 | 625.84 lei 6-8 săpt. | |
| Springer International Publishing – 21 aug 2020 | 633.21 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 461.83 lei - 20%
Preț: 461.57 lei - 20%
Preț: 424.26 lei - 20%
Preț: 390.69 lei - 20%
Preț: 498.50 lei - 15%
Preț: 388.50 lei - 20%
Preț: 390.35 lei - 20%
Preț: 460.98 lei - 20%
Preț: 461.52 lei - 20%
Preț: 497.55 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.83 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 391.14 lei - 20%
Preț: 389.85 lei - 20%
Preț: 461.32 lei - 20%
Preț: 498.32 lei - 20%
Preț: 496.64 lei - 20%
Preț: 532.28 lei - 20%
Preț: 527.36 lei - 20%
Preț: 498.46 lei - 15%
Preț: 461.85 lei - 20%
Preț: 390.12 lei - 20%
Preț: 532.41 lei - 20%
Preț: 462.24 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 252.15 lei - 20%
Preț: 390.94 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.86 lei - 20%
Preț: 532.54 lei - 20%
Preț: 462.67 lei - 20%
Preț: 461.65 lei - 20%
Preț: 639.72 lei - 20%
Preț: 255.91 lei - 15%
Preț: 535.92 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 499.36 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.20 lei - 20%
Preț: 249.95 lei
Preț: 324.35 lei
Preț vechi: 405.44 lei
-20% Nou
Puncte Express: 487
Preț estimativ în valută:
57.39€ • 67.39$ • 50.38£
57.39€ • 67.39$ • 50.38£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319668079
ISBN-10: 3319668072
Pagini: 376
Ilustrații: XV, 376 p. 129 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.55 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI
Locul publicării:Cham, Switzerland
ISBN-10: 3319668072
Pagini: 376
Ilustrații: XV, 376 p. 129 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.55 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI
Locul publicării:Cham, Switzerland
Caracteristici
Includes supplementary material: sn.pub/extras
Cuprins
Explainable Artificial Intelligence: concepts, applications, research challenges and visions.- The Explanation Game: Explaining Machine Learning Models Using Shapley Values.- Back to the Feature: a Neural-Symbolic Perspective on Explainable AI.- Explain Graph Neural Networks to Understand Weighted Graph Features in Node Classification.- Explainable Reinforcement Learning: A Survey.- A Projected Stochastic Gradient algorithm for estimating Shapley Value applied in attribute importance.- Explaining predictive models with mixed features using Shapley values and conditional inference trees.- Explainable Deep Learning for Fault Prognostics in Complex Systems: A Particle Accelerator Use-Case.- eXDiL: A Tool for Classifying and eXplaining Hospital Discharge Letters.- Data Understanding and Interpretation by the Cooperation of Data Analyst and Medical Expert.- A study on the fusion of pixels and patient metadata in CNN-based classification of skin lesion images.- The European legal framework for medical AI.- An Efficient Method for Mining Informative Association Rules in Knowledge Extraction.- Interpretation of SVM using Data Mining Technique to Extract Syllogistic Rules.- Non-Local Second-Order Attention Network For Single Image Super Resolution.- ML-ModelExplorer: An explorative model-agnostic approach to evaluate and compare multi-class classifiers.- Subverting Network Intrusion Detection: Crafting Adversarial Examples Accounting for Domain-Specific Constraints.- Scenario-based Requirements Elicitation for User-Centric Explainable AI A Case in Fraud Detection.- On-the-fly Black-Box Probably Approximately Correct Checking of Recurrent Neural Networks.- Active Learning for Auditory Hierarchy.- Improving short text classification through global augmentation methods.- Interpretable Topic Extraction and Word Embedding Learning using row-stochastic DEDICOM.- A Clustering Backed Deep Learning Approach for Document Layout Analysis.- Calibrating Human-AI Collaboration: Impactof Risk, Ambiguity and Transparency on Algorithmic Bias.- Applying AI in Practice: Key Challenges and Lessons Learned.- Function Space Pooling For Graph Convolutional Networks.- Analysis of optical brain signals using connectivity graph networks.- Property-Based Testing for Parameter Learning of Probabilistic Graphical Models.- An Ensemble Interpretable Machine Learning Scheme for Securing Data Quality at the Edge.- Inter-Space Machine Learning in Smart Environments.