Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II: Lecture Notes in Computer Science, cartea 10535
Editat de Michelangelo Ceci, Jaakko Hollmén, Ljupčo Todorovski, Celine Vens, Sašo Džeroskien Limba Engleză Paperback – 10 ian 2018
The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows:
Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning.
Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning.
Part III: applied data science track; nectar track; and demo track.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 348.43 lei 6-8 săpt. | |
| Springer International Publishing – 10 ian 2018 | 348.43 lei 6-8 săpt. | |
| Springer International Publishing – 30 dec 2017 | 349.23 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 461.83 lei - 20%
Preț: 461.57 lei - 20%
Preț: 424.26 lei - 20%
Preț: 390.69 lei - 20%
Preț: 498.50 lei - 15%
Preț: 388.50 lei - 20%
Preț: 390.35 lei - 20%
Preț: 460.98 lei - 20%
Preț: 461.52 lei - 20%
Preț: 497.55 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.83 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 391.14 lei - 20%
Preț: 389.85 lei - 20%
Preț: 461.32 lei - 20%
Preț: 498.32 lei - 20%
Preț: 496.64 lei - 20%
Preț: 532.28 lei - 20%
Preț: 527.36 lei - 20%
Preț: 498.46 lei - 15%
Preț: 461.85 lei - 20%
Preț: 390.12 lei - 20%
Preț: 532.41 lei - 20%
Preț: 462.24 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 252.15 lei - 20%
Preț: 390.94 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.86 lei - 20%
Preț: 532.54 lei - 20%
Preț: 462.67 lei - 20%
Preț: 461.65 lei - 20%
Preț: 639.72 lei - 20%
Preț: 255.91 lei - 15%
Preț: 535.92 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 499.36 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.20 lei - 20%
Preț: 249.95 lei
Preț: 348.43 lei
Preț vechi: 435.53 lei
-20% Nou
Puncte Express: 523
Preț estimativ în valută:
61.65€ • 72.40$ • 54.12£
61.65€ • 72.40$ • 54.12£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319712451
ISBN-10: 3319712454
Pagini: 821
Ilustrații: XXXIII, 866 p. 213 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.24 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3319712454
Pagini: 821
Ilustrații: XXXIII, 866 p. 213 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.24 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Pattern and Sequence Mining.- BeatLex: Summarizing and Forecasting Time Series with Patterns.- Behavioral Constraint Template-Based Sequence Classification.- Efficient Sequence Regression by Learning Linear Models in All-Subsequence Space.- Subjectively Interesting Connecting Trees.- Privacy and Security.- Malware Detection by Analysing Encrypted Network Traffic with Neural Networks.- PEM: Practical Differentially Private System for Large-Scale Cross-Institutional Data Mining.- Probabilistic Models and Methods.- Bayesian Heatmaps: Probabilistic Classification with Multiple Unreliable Information Sources.- Bayesian Inference for Least Squares Temporal Difference Regularization.- Discovery of Causal Models that Contain Latent Variables through Bayesian Scoring of Independence Constraints.- Labeled DBN learning with community structure knowledge.- Multi-view Generative Adversarial Networks.- Online Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic Models.- PAC-Bayesian Analysis for a two-step Hierarchical Multiview Learning Approach.- Partial Device Fingerprints.- Robust Multi-view Topic Modeling by Incorporating Detecting Anomalies.- Recommendation.- A Regularization Method with Inference of Trust and Distrust in Recommender
Systems.- A Unified Contextual Bandit Framework for Long- and Short-Term Recommendations.- Perceiving the Next Choice with Comprehensive Transaction Embeddings for Online Recommendation.- Regression.- Adaptive Skip-Train Structured Regression for Temporal Networks.- ALADIN: A New Approach for Drug-Target Interaction Prediction.- Co-Regularised Support Vector Regression.- Online Regression with Controlled Label Noise Rate.- Reinforcement Learning.- Generalized Inverse Reinforcement Learning with Linearly Solvable MDP.- Max K-armed bandit: On the ExtremeHunter algorithm and beyond.- Variational Thompson Sampling for Relational Recurrent Bandits.- Subgroup Discovery.- Explaining Deviating Subsetsthrough Explanation Networks.- Flash points: Discovering exceptional pairwise behaviors in vote or rating data.- Time Series and Streams.- A Multiscale Bezier-Representation for Time Series that Supports Elastic Matching.- Arbitrated Ensemble for Time Series Forecasting.- Cost Sensitive Time-series Classification.- Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams.- Efficient Temporal Kernels between Feature Sets for Time Series Classification.- Forecasting and Granger modelling with non-linear dynamical dependencies.- Learning TSK Fuzzy Rules from Data Streams.- Non-Parametric Online AUC Maximization.- On-line Dynamic Time Warping for Streaming Time Series.- PowerCast: Mining and Forecasting Power Grid Sequences.- UAPD: Predicting Urban Anomalies from Spatial-Temporal Data.- Transfer and Multi-Task Learning.- A Novel Rating Pattern Transfer Model for Improving Non-Overlapping Cross-Domain Collaborative Filtering.- Distributed Multi-task Learning for SensorNetwork.- Learning task structure via sparsity grouped multitask learning.- Lifelong Learning with Gaussian Processes.- Personalized Tag Recommendation for Images Using Deep Transfer Learning.- Ranking based Multitask Learning of Scoring Functions.- Theoretical Analysis of Domain Adaptation with Optimal Transport.- TSP: Learning Task-Speci_c Pivots for Unsupervised Domain Adaptation.- Unsupervised and Semisupervised Learning.- k2-means for fast and accurate large scale clustering.- A Simple Exponential Family Framework for Zero-Shot Learning.- DeepCluster: A General Clustering Framework based on Deep Learning.- Multi-view Spectral Clustering on Conflicting Views.- Pivot-based Distributed K-Nearest Neighbor Mining.
Systems.- A Unified Contextual Bandit Framework for Long- and Short-Term Recommendations.- Perceiving the Next Choice with Comprehensive Transaction Embeddings for Online Recommendation.- Regression.- Adaptive Skip-Train Structured Regression for Temporal Networks.- ALADIN: A New Approach for Drug-Target Interaction Prediction.- Co-Regularised Support Vector Regression.- Online Regression with Controlled Label Noise Rate.- Reinforcement Learning.- Generalized Inverse Reinforcement Learning with Linearly Solvable MDP.- Max K-armed bandit: On the ExtremeHunter algorithm and beyond.- Variational Thompson Sampling for Relational Recurrent Bandits.- Subgroup Discovery.- Explaining Deviating Subsetsthrough Explanation Networks.- Flash points: Discovering exceptional pairwise behaviors in vote or rating data.- Time Series and Streams.- A Multiscale Bezier-Representation for Time Series that Supports Elastic Matching.- Arbitrated Ensemble for Time Series Forecasting.- Cost Sensitive Time-series Classification.- Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams.- Efficient Temporal Kernels between Feature Sets for Time Series Classification.- Forecasting and Granger modelling with non-linear dynamical dependencies.- Learning TSK Fuzzy Rules from Data Streams.- Non-Parametric Online AUC Maximization.- On-line Dynamic Time Warping for Streaming Time Series.- PowerCast: Mining and Forecasting Power Grid Sequences.- UAPD: Predicting Urban Anomalies from Spatial-Temporal Data.- Transfer and Multi-Task Learning.- A Novel Rating Pattern Transfer Model for Improving Non-Overlapping Cross-Domain Collaborative Filtering.- Distributed Multi-task Learning for SensorNetwork.- Learning task structure via sparsity grouped multitask learning.- Lifelong Learning with Gaussian Processes.- Personalized Tag Recommendation for Images Using Deep Transfer Learning.- Ranking based Multitask Learning of Scoring Functions.- Theoretical Analysis of Domain Adaptation with Optimal Transport.- TSP: Learning Task-Speci_c Pivots for Unsupervised Domain Adaptation.- Unsupervised and Semisupervised Learning.- k2-means for fast and accurate large scale clustering.- A Simple Exponential Family Framework for Zero-Shot Learning.- DeepCluster: A General Clustering Framework based on Deep Learning.- Multi-view Spectral Clustering on Conflicting Views.- Pivot-based Distributed K-Nearest Neighbor Mining.
Caracteristici
Includes supplementary material: sn.pub/extras