Inductive Logic Programming: Lecture Notes in Artificial Intelligence
Editat de Nikos Katzouris, Alexander Artikisen Limba Engleză Paperback – 24 feb 2022
Din seria Lecture Notes in Artificial Intelligence
- 20%
Preț: 317.85 lei - 20%
Preț: 327.36 lei - 20%
Preț: 638.44 lei - 20%
Preț: 331.30 lei - 20%
Preț: 641.62 lei - 20%
Preț: 324.19 lei - 20%
Preț: 314.67 lei - 20%
Preț: 330.54 lei - 20%
Preț: 678.21 lei - 20%
Preț: 636.86 lei - 20%
Preț: 428.17 lei - 20%
Preț: 324.19 lei - 20%
Preț: 298.88 lei - 20%
Preț: 316.28 lei - 20%
Preț: 639.07 lei - 20%
Preț: 321.81 lei - 20%
Preț: 315.48 lei - 20%
Preț: 620.33 lei - 20%
Preț: 338.47 lei - 20%
Preț: 635.26 lei - 20%
Preț: 635.26 lei -
Preț: 385.99 lei - 20%
Preț: 322.61 lei - 20%
Preț: 391.36 lei - 20%
Preț: 321.49 lei - 20%
Preț: 499.90 lei - 20%
Preț: 325.79 lei - 20%
Preț: 498.50 lei - 20%
Preț: 328.16 lei - 20%
Preț: 319.75 lei - 20%
Preț: 637.64 lei - 20%
Preț: 568.70 lei - 20%
Preț: 324.19 lei - 20%
Preț: 638.76 lei - 20%
Preț: 321.03 lei - 20%
Preț: 687.57 lei - 20%
Preț: 314.86 lei - 20%
Preț: 328.94 lei - 20%
Preț: 573.45 lei - 20%
Preț: 325.79 lei - 20%
Preț: 321.03 lei - 20%
Preț: 531.50 lei - 20%
Preț: 330.54 lei - 20%
Preț: 321.03 lei - 20%
Preț: 634.45 lei - 20%
Preț: 325.79 lei - 20%
Preț: 325.30 lei
Preț: 403.00 lei
Preț vechi: 503.75 lei
-20%
Puncte Express: 605
Preț estimativ în valută:
71.32€ • 83.35$ • 61.92£
71.32€ • 83.35$ • 61.92£
Carte tipărită la comandă
Livrare economică 19 februarie-05 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030974534
ISBN-10: 3030974537
Pagini: 296
Ilustrații: X, 283 p. 61 illus., 40 illus. in color.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030974537
Pagini: 296
Ilustrații: X, 283 p. 61 illus., 40 illus. in color.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Embedding Models for Knowledge Graphs Induced by Clusters of Relations and Background Knowledge.- Fanizzi Automatic Conjecturing of P-Recursions Using Lifted Inference.- Machine learning of microbial interactions using Abductive ILP and Hypothesis Frequency/Compression Estimation.- Answer-Set Programs for Reasoning about Counterfactual Interventions and Responsibility Scores for Classification.- Reyes Synthetic Datasets and Evaluation Tools for Inductive Neural Reasoning.- Using Domain-Knowledge to Assist Lead Discovery in Early-Stage Drug Design.- Non-Parametric Learning of Embeddings for Relational Data using Gaifman Locality Theorem.- Ontology Graph Embeddings and ILP for Financial Forecasting.- Transfer learning for boosted relational dependency networks through genetic algorithm.- Online Learning of Logic Based Neural Network Structures.- Programmatic policy extraction by iterative local search.- Mapping across relational domains for transfer learning with word embeddings-based similarity.- A First Step Towards Even More Sparse Encodings of Probability Distributions.- Feature Learning by Least Generalization.- Learning Logic Programs Using Neural Networks by Exploiting Symbolic Invariance.- Learning and revising dynamic temporal theories in the full Discrete Event Calculus.- Human-like rule learning from images using one-shot hypothesis derivation.- Generative Clausal Networks: Relational Decision Trees as Probabilistic Circuits.- A Simulated Annealing Meta-heuristic for Concept Learning in Description Logics.