Finite Dimensional Convexity and Optimization: Studies in Economic Theory, cartea 13
P. Gourdel Autor Monique Florenzano, Cuong Le Vanen Limba Engleză Hardback – 13 mar 2001
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 609.85 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 24 sep 2012 | 609.85 lei 6-8 săpt. | |
| Hardback (1) | 615.66 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 13 mar 2001 | 615.66 lei 6-8 săpt. |
Din seria Studies in Economic Theory
- 18%
Preț: 920.88 lei -
Preț: 379.71 lei - 18%
Preț: 915.58 lei -
Preț: 369.36 lei - 15%
Preț: 620.38 lei -
Preț: 371.73 lei -
Preț: 379.51 lei - 18%
Preț: 1198.72 lei - 18%
Preț: 1192.79 lei - 15%
Preț: 619.12 lei - 15%
Preț: 619.61 lei - 15%
Preț: 618.50 lei - 15%
Preț: 616.15 lei - 15%
Preț: 619.91 lei - 15%
Preț: 620.86 lei - 18%
Preț: 918.30 lei - 15%
Preț: 618.19 lei - 18%
Preț: 914.06 lei - 15%
Preț: 611.74 lei - 18%
Preț: 982.75 lei - 15%
Preț: 623.05 lei - 15%
Preț: 616.45 lei - 15%
Preț: 627.45 lei -
Preț: 386.89 lei - 18%
Preț: 917.56 lei - 15%
Preț: 614.73 lei - 18%
Preț: 925.75 lei
Preț: 615.66 lei
Preț vechi: 724.31 lei
-15% Nou
Puncte Express: 923
Preț estimativ în valută:
108.96€ • 127.78$ • 95.54£
108.96€ • 127.78$ • 95.54£
Carte tipărită la comandă
Livrare economică 24 ianuarie-07 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540415169
ISBN-10: 3540415165
Pagini: 172
Ilustrații: XII, 154 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.42 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Economic Theory
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540415165
Pagini: 172
Ilustrații: XII, 154 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.42 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Economic Theory
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Convexity in ?n.- 1.1 Basic concepts.- 1.2. Topological properties of convex sets.- Exercises.- 2. Separation and Polarity.- 2.1 Separation of convex sets.- 2.2 Polars of convex sets and orthogonal subspaces.- Exercises.- 3. Extremal Structure of Convex Sets.- 3.1 Extreme points and faces of convex sets.- 3.2 Application to linear inequalities. Weyl’s theorem.- 3.3 Extreme points and extremal subsets of a polyhedral convex set.- Exercises.- 4. Linear Programming.- 4.1 Necessary and sufficient conditions of optimality.- 4.2 The duality theorem of linear programming.- 4.3 The simplex method.- Exercises.- 5. Convex Functions.- 5.1 Basic definitions and properties.- 5.2 Continuity theorems.- 5.3 Continuity properties of collections of convex functions.- Exercises.- 6. Differential Theory of Convex Functions.- 6.1 The Hahn-Banach dominated extension theorem.- 6.2 Sublinear functions.- 6.3 Support functions.- 6.4 Directional derivatives.- 6.5 Subgradients and subdifferential of a convex function.- 6.6 Differentiability of convex functions.- 6.7 Differential continuity for convex functions.- Exercises.- 7. Convex Optimization With Convex Constraints.- 7.1 The minimum of a convex function f: ?n ? ?.- 7.2 Kuhn-Tucker Conditions.- 7.3 Value function.- Exercises.- 8. Non Convex Optimization.- 8.1 Quasi-convex functions.- 8.2 Minimization of quasi-convex functions.- 8.3 Differentiate optimization.- Exercises.- A. Appendix.- A.1 Some preliminaries on topology.- A.2 The Mean value theorem.- A.3 The Local inversion theorem.- A.4 The implicit functions theorem.
Caracteristici
Optimization is presented especially for use in the field of economic theory