Cantitate/Preț
Produs

Computer Vision - ECCV 2022: Lecture Notes in Computer Science

Editat de Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
en Limba Engleză Paperback – 23 oct 2022
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022.
 
The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (32) 70155 lei  6-8 săpt.
  Springer – 23 oct 2022 70155 lei  6-8 săpt.
  Springer – 12 noi 2022 70214 lei  6-8 săpt.
  Springer – 31 oct 2022 70214 lei  6-8 săpt.
  Springer – 3 noi 2022 70235 lei  6-8 săpt.
  Springer – 24 oct 2022 70235 lei  6-8 săpt.
  Springer – 6 noi 2022 70235 lei  6-8 săpt.
  Springer – 3 noi 2022 70235 lei  6-8 săpt.
  Springer – 28 oct 2022 70235 lei  6-8 săpt.
  Springer – 23 oct 2022 70235 lei  6-8 săpt.
  Springer – 13 noi 2022 70235 lei  6-8 săpt.
  Springer – 4 noi 2022 70235 lei  6-8 săpt.
  Springer – 3 noi 2022 70256 lei  6-8 săpt.
  Springer – 11 noi 2022 70256 lei  6-8 săpt.
  Springer – 2 noi 2022 70256 lei  6-8 săpt.
  Springer – 11 noi 2022 70256 lei  6-8 săpt.
  Springer – 23 oct 2022 70256 lei  6-8 săpt.
  Springer – 3 noi 2022 70256 lei  6-8 săpt.
  Springer – 13 noi 2022 70277 lei  6-8 săpt.
  Springer – 23 oct 2022 70277 lei  6-8 săpt.
  Springer – 6 noi 2022 70277 lei  6-8 săpt.
  Springer – 11 noi 2022 70277 lei  6-8 săpt.
  Springer – 29 oct 2022 70277 lei  6-8 săpt.
  Springer – 30 oct 2022 70277 lei  6-8 săpt.
  Springer – 23 oct 2022 70299 lei  6-8 săpt.
  Springer – 23 oct 2022 70299 lei  6-8 săpt.
  Springer – 3 noi 2022 70299 lei  6-8 săpt.
  Springer – noi 2022 70299 lei  6-8 săpt.
  Springer – 9 noi 2022 70320 lei  6-8 săpt.
  Springer – 3 noi 2022 70320 lei  6-8 săpt.
  Springer – 28 oct 2022 70336 lei  6-8 săpt.
  Springer – 23 oct 2022 70336 lei  6-8 săpt.
  Springer – 23 oct 2022 70378 lei  6-8 săpt.

Din seria Lecture Notes in Computer Science

Preț: 70155 lei

Preț vechi: 87694 lei
-20% Nou

Puncte Express: 1052

Preț estimativ în valută:
12414 14557$ 10902£

Carte tipărită la comandă

Livrare economică 11-25 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031198410
ISBN-10: 3031198417
Pagini: 788
Ilustrații: LVI, 729 p. 220 illus., 214 illus. in color.
Dimensiuni: 155 x 235 x 42 mm
Greutate: 1.17 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science

Locul publicării:Cham, Switzerland

Cuprins

Lane Detection Transformer Based on Multi-Frame Horizontal and
Vertical Attention and Visual Transformer Module.- ProposalContrast: Unsupervised Pre-training for LiDAR-Based 3D Object Detection.- PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map.- Master of All: Simultaneous Generalization of Urban-Scene Segmentation to All Adverse Weather Conditions.- LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds.- Visual Cross-View Metric Localization with Dense Uncertainty Estimates.- V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer.- DevNet: Self-Supervised Monocular Depth Learning via Density Volume Construction.- Action-Based Contrastive Learning for Trajectory Prediction.- Radatron: Accurate Detection Using Multi-Resolution Cascaded MIMO Radar.- LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection.- Efficient Point Cloud Segmentation with Geometry-Aware Sparse Networks.- FH-Net: A Fast Hierarchical Network for Scene Flow Estimation on Real-World Point Clouds.- SpatialDETR: Robust Scalable Transformer-Based 3D Object Detection from Multi-View Camera Images with Global Cross-Sensor Attention.- Pixel-Wise Energy-Biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes.- Rethinking Closed-Loop Training for Autonomous Driving.- SLiDE: Self-Supervised LiDAR De-Snowing through Reconstruction Difficulty.- Generative Meta-Adversarial Network for Unseen Object Navigation.- Object Manipulation via Visual Target Localization.- MoDA: Map Style Transfer for Self-Supervised Domain Adaptation of Embodied Agents.- Housekeep: Tidying Virtual Households Using Commonsense Reasoning.- Domain Randomization-Enhanced Depth Simulation and Restoration for Perceiving and Grasping Specular and Transparent Objects.- Resolving Copycat Problems in Visual Imitation Learning via Residual Action Prediction.- OPD: Single-View 3D Openable Part Detection.- AirDet: Few-Shot Detection without Fine-Tuning for Autonomous Exploration.- TransGrasp: Grasp Pose Estimation of a Category of Objects by Transferring Grasps from Only One Labeled Instance.- StARformer: Transformer with State-Action-Reward Representations for Visual Reinforcement Learning.- TIDEE: Tidying Up Novel Rooms Using Visuo-Semantic Commonsense Priors.- Learning Efficient Multi-agent Cooperative Visual Exploration.- Zero-Shot Category-Level Object Pose Estimation.- Sim-to-Real 6D Object Pose Estimation via Iterative Self-Training for Robotic Bin Picking.- Active Audio-Visual Separation of Dynamic Sound Sources.- DexMV: Imitation Learning for Dexterous Manipulation from Human Videos.- Sim-2-Sim Transfer for Vision-and-Language Navigation in Continuous Environments.- Style-Agnostic Reinforcement Learning.- Self-Supervised Interactive Object Segmentation through a Singulation-and-Grasping Approach.- Learning from Unlabeled 3D Environmentsfor Vision-and-Language Navigation.- BodySLAM: Joint Camera Localisation, Mapping, and Human Motion Tracking.- FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion.- Learning Algebraic Representation for Systematic Generalization in Abstract Reasoning.- Video Dialog As Conversation about Objects Living in Space-Time.