Computer Vision - ECCV 2022: Lecture Notes in Computer Science
Editat de Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassneren Limba Engleză Paperback – 23 oct 2022
The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (32) | 701.55 lei 43-57 zile | |
| Springer – 23 oct 2022 | 701.55 lei 43-57 zile | |
| Springer – 12 noi 2022 | 702.14 lei 43-57 zile | |
| Springer – 31 oct 2022 | 702.14 lei 43-57 zile | |
| Springer – 3 noi 2022 | 702.35 lei 43-57 zile | |
| Springer – 24 oct 2022 | 702.35 lei 43-57 zile | |
| Springer – 6 noi 2022 | 702.35 lei 43-57 zile | |
| Springer – 3 noi 2022 | 702.35 lei 43-57 zile | |
| Springer – 28 oct 2022 | 702.35 lei 43-57 zile | |
| Springer – 23 oct 2022 | 702.35 lei 43-57 zile | |
| Springer – 13 noi 2022 | 702.35 lei 43-57 zile | |
| Springer – 4 noi 2022 | 702.35 lei 43-57 zile | |
| Springer – 3 noi 2022 | 702.56 lei 43-57 zile | |
| Springer – 11 noi 2022 | 702.56 lei 43-57 zile | |
| Springer – 2 noi 2022 | 702.56 lei 43-57 zile | |
| Springer – 11 noi 2022 | 702.56 lei 43-57 zile | |
| Springer – 23 oct 2022 | 702.56 lei 43-57 zile | |
| Springer – 3 noi 2022 | 702.56 lei 43-57 zile | |
| Springer – 13 noi 2022 | 702.77 lei 43-57 zile | |
| Springer – 23 oct 2022 | 702.77 lei 43-57 zile | |
| Springer – 6 noi 2022 | 702.77 lei 43-57 zile | |
| Springer – 11 noi 2022 | 702.77 lei 43-57 zile | |
| Springer – 29 oct 2022 | 702.77 lei 43-57 zile | |
| Springer – 30 oct 2022 | 702.77 lei 43-57 zile | |
| Springer – 23 oct 2022 | 702.99 lei 43-57 zile | |
| Springer – 23 oct 2022 | 702.99 lei 43-57 zile | |
| Springer – 3 noi 2022 | 702.99 lei 43-57 zile | |
| Springer – noi 2022 | 702.99 lei 43-57 zile | |
| Springer – 9 noi 2022 | 703.20 lei 43-57 zile | |
| Springer – 3 noi 2022 | 703.20 lei 43-57 zile | |
| Springer – 28 oct 2022 | 703.36 lei 43-57 zile | |
| Springer – 23 oct 2022 | 703.36 lei 43-57 zile | |
| Springer – 23 oct 2022 | 703.78 lei 43-57 zile |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.37 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 390.69 lei - 20%
Preț: 527.36 lei - 15%
Preț: 388.50 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 389.72 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 532.41 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 639.72 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 702.77 lei
Preț vechi: 878.47 lei
-20% Nou
Puncte Express: 1054
Preț estimativ în valută:
124.36€ • 145.82$ • 109.21£
124.36€ • 145.82$ • 109.21£
Carte tipărită la comandă
Livrare economică 09-23 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031198205
ISBN-10: 3031198204
Pagini: 812
Ilustrații: LVII, 753 p. 236 illus., 231 illus. in color.
Dimensiuni: 155 x 235 x 44 mm
Greutate: 1.21 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031198204
Pagini: 812
Ilustrații: LVII, 753 p. 236 illus., 231 illus. in color.
Dimensiuni: 155 x 235 x 44 mm
Greutate: 1.21 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
GOCA: Guided Online Cluster Assignment for Self-Supervised VideoRepresentation Learning.- Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning.- Revisiting the Critical Factors of Augmentation-Invariant Representation Learning.- CA-SSL: Class-Agnostic Semi-Supervised Learning for Detection and Segmentation.- Dual Adaptive Transformations for Weakly Supervised Point Cloud Segmentation.- Semantic-Aware Fine-Grained Correspondence.- Self-Supervised Classification Network.- Data Invariants to Understand Unsupervised Out-of-Distribution Detection.- Domain Invariant Masked Autoencoders for Self-Supervised Learning from Multi-Domains.- Semi-Supervised Object Detection via Virtual Category Learning.- Completely Self-Supervised Crowd Counting via Distribution Matching.- Coarse-to-Fine Incremental Few-Shot Learning.- Learning Unbiased Transferability for Domain Adaptation by Uncertainty Modeling.- Learn2Augment: Learning to Composite Videos for Data Augmentation in Action Recognition.- CYBORGS: Contrastively Bootstrapping Object Representations by Grounding in Segmentation.- PSS: Progressive Sample Selection for Open-World Visual Representation Learning.- Improving Self-Supervised Lightweight Model Learning via Hard-Aware Metric Distillation.- Object Discovery via Contrastive Learning for Weakly Supervised Object Detection.- Stochastic Consensus: Enhancing Semi-Supervised Learning with Consistency of Stochastic Classifiers.- DiffuseMorph: Unsupervised Deformable Image Registration Using Diffusion Model.- Semi-Leak: Membership Inference Attacks against Semi-Supervised Learning.- OpenLDN: Learning to Discover Novel Classes for Open-World Semi-Supervised Learning.- Embedding Contrastive Unsupervised Features to Cluster in- and Out-of-Distribution Noise in Corrupted Image Datasets.- Unsupervised Few-Shot Image Classification by Learning Features into Clustering Space.- Towards Realistic Semi-Supervised Learning.- Masked Siamese Networks for Label-Efficient Learning.- Natural Synthetic Anomalies for Self-Supervised Anomaly Detection and Localization.- Understanding Collapse in Non-Contrastive Siamese Representation Learning.- Federated Self-Supervised Learning for Video Understanding.- Towards Efficient and Effective Self-Supervised Learning of Visual Representations.- DSR – A Dual Subspace Re-Projection Network for Surface Anomaly Detection.- PseudoAugment: Learning to Use Unlabeled Data for Data Augmentation in Point Clouds.- MVSTER: Epipolar Transformer for Efficient Multi-View Stereo.- RelPose: Predicting Probabilistic Relative Rotation for Single Objects in the Wild.- R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis.- KD-MVS: Knowledge Distillation Based Self-Supervised Learning for Multi-View Stereo.- SALVe: Semantic Alignment Verification for Floorplan Reconstruction from Sparse Panoramas.- RC-MVSNet: Unsupervised Multi-View Stereo with Neural Rendering.- Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes.- NeILF: Neural Incident Light Field for Physically-Based Material Estimation.- ARF: Artistic Radiance Fields.- Multiview Stereo with Cascaded Epipolar RAFT.