Computer Vision - ECCV 2022: Lecture Notes in Computer Science
Editat de Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassneren Limba Engleză Paperback – 23 oct 2022
The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (32) | 701.55 lei 6-8 săpt. | |
| Springer – 23 oct 2022 | 701.55 lei 6-8 săpt. | |
| Springer – 12 noi 2022 | 702.14 lei 6-8 săpt. | |
| Springer – 31 oct 2022 | 702.14 lei 6-8 săpt. | |
| Springer – 3 noi 2022 | 702.35 lei 6-8 săpt. | |
| Springer – 24 oct 2022 | 702.35 lei 6-8 săpt. | |
| Springer – 6 noi 2022 | 702.35 lei 6-8 săpt. | |
| Springer – 3 noi 2022 | 702.35 lei 6-8 săpt. | |
| Springer – 28 oct 2022 | 702.35 lei 6-8 săpt. | |
| Springer – 23 oct 2022 | 702.35 lei 6-8 săpt. | |
| Springer – 13 noi 2022 | 702.35 lei 6-8 săpt. | |
| Springer – 4 noi 2022 | 702.35 lei 6-8 săpt. | |
| Springer – 3 noi 2022 | 702.56 lei 6-8 săpt. | |
| Springer – 11 noi 2022 | 702.56 lei 6-8 săpt. | |
| Springer – 2 noi 2022 | 702.56 lei 6-8 săpt. | |
| Springer – 11 noi 2022 | 702.56 lei 6-8 săpt. | |
| Springer – 23 oct 2022 | 702.56 lei 6-8 săpt. | |
| Springer – 3 noi 2022 | 702.56 lei 6-8 săpt. | |
| Springer – 13 noi 2022 | 702.77 lei 6-8 săpt. | |
| Springer – 23 oct 2022 | 702.77 lei 6-8 săpt. | |
| Springer – 6 noi 2022 | 702.77 lei 6-8 săpt. | |
| Springer – 11 noi 2022 | 702.77 lei 6-8 săpt. | |
| Springer – 29 oct 2022 | 702.77 lei 6-8 săpt. | |
| Springer – 30 oct 2022 | 702.77 lei 6-8 săpt. | |
| Springer – 23 oct 2022 | 702.99 lei 6-8 săpt. | |
| Springer – 23 oct 2022 | 702.99 lei 6-8 săpt. | |
| Springer – 3 noi 2022 | 702.99 lei 6-8 săpt. | |
| Springer – noi 2022 | 702.99 lei 6-8 săpt. | |
| Springer – 9 noi 2022 | 703.20 lei 6-8 săpt. | |
| Springer – 3 noi 2022 | 703.20 lei 6-8 săpt. | |
| Springer – 28 oct 2022 | 703.36 lei 6-8 săpt. | |
| Springer – 23 oct 2022 | 703.36 lei 6-8 săpt. | |
| Springer – 23 oct 2022 | 703.78 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 400.77 lei - 20%
Preț: 754.11 lei - 20%
Preț: 324.19 lei - 20%
Preț: 373.80 lei - 20%
Preț: 342.61 lei - 20%
Preț: 403.00 lei - 20%
Preț: 573.45 lei -
Preț: 395.25 lei - 20%
Preț: 487.46 lei - 20%
Preț: 355.27 lei - 20%
Preț: 731.97 lei - 20%
Preț: 293.24 lei - 20%
Preț: 669.21 lei - 20%
Preț: 984.64 lei - 20%
Preț: 620.33 lei - 20%
Preț: 336.86 lei - 20%
Preț: 330.54 lei - 20%
Preț: 313.87 lei - 20%
Preț: 679.09 lei - 20%
Preț: 373.16 lei - 20%
Preț: 782.57 lei - 20%
Preț: 434.17 lei - 20%
Preț: 489.11 lei - 20%
Preț: 904.16 lei - 20%
Preț: 375.72 lei - 20%
Preț: 400.17 lei - 20%
Preț: 432.78 lei - 20%
Preț: 631.96 lei - 20%
Preț: 432.11 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 556.96 lei - 20%
Preț: 488.90 lei - 20%
Preț: 560.93 lei - 20%
Preț: 327.36 lei - 20%
Preț: 340.04 lei - 20%
Preț: 327.36 lei - 20%
Preț: 328.94 lei - 20%
Preț: 629.71 lei - 20%
Preț: 568.70 lei - 20%
Preț: 447.31 lei - 20%
Preț: 733.68 lei - 20%
Preț: 315.26 lei - 20%
Preț: 315.62 lei - 20%
Preț: 1020.28 lei - 20%
Preț: 850.42 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 519.32 lei
Preț: 702.77 lei
Preț vechi: 878.47 lei
-20%
Puncte Express: 1054
Preț estimativ în valută:
124.33€ • 144.55$ • 107.77£
124.33€ • 144.55$ • 107.77£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031198205
ISBN-10: 3031198204
Pagini: 812
Ilustrații: LVII, 753 p. 236 illus., 231 illus. in color.
Dimensiuni: 155 x 235 x 44 mm
Greutate: 1.21 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031198204
Pagini: 812
Ilustrații: LVII, 753 p. 236 illus., 231 illus. in color.
Dimensiuni: 155 x 235 x 44 mm
Greutate: 1.21 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
GOCA: Guided Online Cluster Assignment for Self-Supervised VideoRepresentation Learning.- Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning.- Revisiting the Critical Factors of Augmentation-Invariant Representation Learning.- CA-SSL: Class-Agnostic Semi-Supervised Learning for Detection and Segmentation.- Dual Adaptive Transformations for Weakly Supervised Point Cloud Segmentation.- Semantic-Aware Fine-Grained Correspondence.- Self-Supervised Classification Network.- Data Invariants to Understand Unsupervised Out-of-Distribution Detection.- Domain Invariant Masked Autoencoders for Self-Supervised Learning from Multi-Domains.- Semi-Supervised Object Detection via Virtual Category Learning.- Completely Self-Supervised Crowd Counting via Distribution Matching.- Coarse-to-Fine Incremental Few-Shot Learning.- Learning Unbiased Transferability for Domain Adaptation by Uncertainty Modeling.- Learn2Augment: Learning to Composite Videos for Data Augmentation in Action Recognition.- CYBORGS: Contrastively Bootstrapping Object Representations by Grounding in Segmentation.- PSS: Progressive Sample Selection for Open-World Visual Representation Learning.- Improving Self-Supervised Lightweight Model Learning via Hard-Aware Metric Distillation.- Object Discovery via Contrastive Learning for Weakly Supervised Object Detection.- Stochastic Consensus: Enhancing Semi-Supervised Learning with Consistency of Stochastic Classifiers.- DiffuseMorph: Unsupervised Deformable Image Registration Using Diffusion Model.- Semi-Leak: Membership Inference Attacks against Semi-Supervised Learning.- OpenLDN: Learning to Discover Novel Classes for Open-World Semi-Supervised Learning.- Embedding Contrastive Unsupervised Features to Cluster in- and Out-of-Distribution Noise in Corrupted Image Datasets.- Unsupervised Few-Shot Image Classification by Learning Features into Clustering Space.- Towards Realistic Semi-Supervised Learning.- Masked Siamese Networks for Label-Efficient Learning.- Natural Synthetic Anomalies for Self-Supervised Anomaly Detection and Localization.- Understanding Collapse in Non-Contrastive Siamese Representation Learning.- Federated Self-Supervised Learning for Video Understanding.- Towards Efficient and Effective Self-Supervised Learning of Visual Representations.- DSR – A Dual Subspace Re-Projection Network for Surface Anomaly Detection.- PseudoAugment: Learning to Use Unlabeled Data for Data Augmentation in Point Clouds.- MVSTER: Epipolar Transformer for Efficient Multi-View Stereo.- RelPose: Predicting Probabilistic Relative Rotation for Single Objects in the Wild.- R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis.- KD-MVS: Knowledge Distillation Based Self-Supervised Learning for Multi-View Stereo.- SALVe: Semantic Alignment Verification for Floorplan Reconstruction from Sparse Panoramas.- RC-MVSNet: Unsupervised Multi-View Stereo with Neural Rendering.- Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes.- NeILF: Neural Incident Light Field for Physically-Based Material Estimation.- ARF: Artistic Radiance Fields.- Multiview Stereo with Cascaded Epipolar RAFT.