Computer Vision - ECCV 2022: Lecture Notes in Computer Science
Editat de Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassneren Limba Engleză Paperback – 2 noi 2022
The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (32) | 701.55 lei 43-57 zile | |
| Springer – 23 oct 2022 | 701.55 lei 43-57 zile | |
| Springer – 12 noi 2022 | 702.14 lei 43-57 zile | |
| Springer – 31 oct 2022 | 702.14 lei 43-57 zile | |
| Springer – 3 noi 2022 | 702.35 lei 43-57 zile | |
| Springer – 24 oct 2022 | 702.35 lei 43-57 zile | |
| Springer – 6 noi 2022 | 702.35 lei 43-57 zile | |
| Springer – 3 noi 2022 | 702.35 lei 43-57 zile | |
| Springer – 28 oct 2022 | 702.35 lei 43-57 zile | |
| Springer – 23 oct 2022 | 702.35 lei 43-57 zile | |
| Springer – 13 noi 2022 | 702.35 lei 43-57 zile | |
| Springer – 4 noi 2022 | 702.35 lei 43-57 zile | |
| Springer – 3 noi 2022 | 702.56 lei 43-57 zile | |
| Springer – 11 noi 2022 | 702.56 lei 43-57 zile | |
| Springer – 2 noi 2022 | 702.56 lei 43-57 zile | |
| Springer – 11 noi 2022 | 702.56 lei 43-57 zile | |
| Springer – 23 oct 2022 | 702.56 lei 43-57 zile | |
| Springer – 3 noi 2022 | 702.56 lei 43-57 zile | |
| Springer – 13 noi 2022 | 702.77 lei 43-57 zile | |
| Springer – 23 oct 2022 | 702.77 lei 43-57 zile | |
| Springer – 6 noi 2022 | 702.77 lei 43-57 zile | |
| Springer – 11 noi 2022 | 702.77 lei 43-57 zile | |
| Springer – 29 oct 2022 | 702.77 lei 43-57 zile | |
| Springer – 30 oct 2022 | 702.77 lei 43-57 zile | |
| Springer – 23 oct 2022 | 702.99 lei 43-57 zile | |
| Springer – 23 oct 2022 | 702.99 lei 43-57 zile | |
| Springer – 3 noi 2022 | 702.99 lei 43-57 zile | |
| Springer – noi 2022 | 702.99 lei 43-57 zile | |
| Springer – 9 noi 2022 | 703.20 lei 43-57 zile | |
| Springer – 3 noi 2022 | 703.20 lei 43-57 zile | |
| Springer – 28 oct 2022 | 703.36 lei 43-57 zile | |
| Springer – 23 oct 2022 | 703.36 lei 43-57 zile | |
| Springer – 23 oct 2022 | 703.78 lei 43-57 zile |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.37 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 390.69 lei - 20%
Preț: 527.36 lei - 15%
Preț: 388.50 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 389.72 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 532.41 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 639.72 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 702.56 lei
Preț vechi: 878.21 lei
-20% Nou
Puncte Express: 1054
Preț estimativ în valută:
124.32€ • 145.78$ • 109.18£
124.32€ • 145.78$ • 109.18£
Carte tipărită la comandă
Livrare economică 09-23 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031198267
ISBN-10: 3031198263
Pagini: 808
Ilustrații: LVI, 749 p. 264 illus., 260 illus. in color.
Dimensiuni: 155 x 235 x 44 mm
Greutate: 1.2 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031198263
Pagini: 808
Ilustrații: LVI, 749 p. 264 illus., 260 illus. in color.
Dimensiuni: 155 x 235 x 44 mm
Greutate: 1.2 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
SimpleRecon: 3D Reconstruction without 3D Convolutions.- Structure and Motion from Casual Videos.- What Matters for 3D Scene Flow Network.- Correspondence Reweighted Translation Averaging.- Neural Strands: Learning Hair Geometry and Appearance from Multi-View Images.- GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs.- Objects Can Move: 3D Change Detection by Geometric Transformation Consistency.- Language-Grounded Indoor 3D Semantic Segmentation in the Wild.- Beyond Periodicity: Towards a Unifying Framework for Activations in Coordinate-MLPs.- Deforming Radiance Fields with Cages.- FLEX: Extrinsic Parameters-Free Multi-View 3D Human Motion Reconstruction.- MODE: Multi-View Omnidirectional Depth Estimation with 360° Cameras.- GigaDepth: Learning Depth from Structured Light with Branching Neural Networks.- ActiveNeRF: Learning Where to See with Uncertainty Estimation.- PoserNet: Refining Relative Camera Poses Exploiting Object Detections.- Gaussian Activated Neural Radiance Fields for High Fidelity Reconstruction & Pose Estimation.- Unbiased Gradient Estimation for Differentiable Surface Splatting via Poisson Sampling.- Towards Learning Neural Representations from Shadows.- Class-Incremental Novel Class Discovery.- Unknown-Oriented Learning for Open Set Domain Adaptation.- Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation.- DecoupleNet: Decoupled Network for Domain Adaptive Semantic Segmentation.- Class-Agnostic Object Counting Robust to Intraclass Diversity.- Burn after Reading: Online Adaptation for Cross-Domain Streaming Data.- Mind the Gap in Distilling StyleGANs.- Improving Test-Time Adaptation via Shift-Agnostic Weight Regularization and Nearest Source Prototypes.- Learning Instance-Specific Adaptation for Cross-Domain Segmentation.- RegionCL: Exploring Contrastive Region Pairsfor Self-Supervised Representation Learning.- Long-Tailed Class Incremental Learning.- DLCFT: Deep Linear Continual Fine-Tuning for General Incremental Learning.- Adversarial Partial Domain Adaptation by Cycle Inconsistency.- Combating Label Distribution Shift for Active Domain Adaptation.- GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D LiDAR Segmentation.- CoSMix: Compositional Semantic Mix for Domain Adaptation in 3D LiDAR Segmentation.- A Unified Framework for Domain Adaptive Pose Estimation.- A Broad Study of Pre-training for Domain Generalization and Adaptation.- Prior Knowledge Guided Unsupervised Domain Adaptation.- GCISG: Guided Causal Invariant Learning for Improved Syn-to-Real Generalization.- AcroFOD: An Adaptive Method for Cross-Domain Few-Shot Object Detection.- Unsupervised Domain Adaptation for One-Stage Object Detector Using Offsets to Bounding Box.- Visual Prompt Tuning.- Quasi-Balanced Self-Training on Noise-Aware Synthesis of Object Point Clouds for Closing Domain Gap.