Computer Vision – ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part I: Lecture Notes in Computer Science, cartea 12535
Editat de Adrien Bartoli, Andrea Fusielloen Limba Engleză Paperback – 10 ian 2021
The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics.
Part I focusses on adversarial robustness in the real world; bioimage computation; egocentric perception, interaction and computing; eye gaze in VR, AR, and in the wild; TASK-CV workshop and VisDA challenge; and bodily expressed emotion understanding.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (6) | 333.54 lei 43-57 zile | |
| Springer International Publishing – 5 ian 2021 | 333.54 lei 43-57 zile | |
| Springer International Publishing – 3 ian 2021 | 643.69 lei 43-57 zile | |
| Springer International Publishing – 3 ian 2021 | 643.82 lei 43-57 zile | |
| Springer International Publishing – 10 ian 2021 | 645.75 lei 43-57 zile | |
| Springer International Publishing – 31 ian 2021 | 807.75 lei 43-57 zile | |
| Springer International Publishing – 30 ian 2021 | 808.07 lei 43-57 zile |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 1020.28 lei -
Preț: 395.25 lei - 20%
Preț: 327.36 lei - 20%
Preț: 556.96 lei - 20%
Preț: 400.77 lei - 15%
Preț: 558.12 lei - 20%
Preț: 328.94 lei - 20%
Preț: 340.04 lei - 20%
Preț: 487.46 lei - 20%
Preț: 629.71 lei - 20%
Preț: 386.08 lei - 20%
Preț: 489.11 lei - 20%
Preț: 620.33 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1033.45 lei - 20%
Preț: 782.57 lei - 20%
Preț: 679.09 lei - 20%
Preț: 330.54 lei - 20%
Preț: 1137.10 lei - 20%
Preț: 435.28 lei - 20%
Preț: 375.72 lei - 20%
Preț: 342.61 lei - 20%
Preț: 432.78 lei - 20%
Preț: 904.16 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 373.80 lei - 20%
Preț: 400.17 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 984.64 lei - 20%
Preț: 560.93 lei - 20%
Preț: 731.97 lei - 20%
Preț: 563.29 lei - 20%
Preț: 403.00 lei - 20%
Preț: 793.92 lei - 20%
Preț: 324.19 lei - 20%
Preț: 733.68 lei - 20%
Preț: 336.86 lei - 20%
Preț: 327.36 lei - 20%
Preț: 573.45 lei - 20%
Preț: 558.53 lei - 20%
Preț: 850.42 lei - 20%
Preț: 560.93 lei - 20%
Preț: 560.93 lei - 20%
Preț: 631.96 lei - 20%
Preț: 568.70 lei - 20%
Preț: 488.90 lei - 20%
Preț: 293.24 lei
Preț: 645.75 lei
Preț vechi: 807.19 lei
-20%
Puncte Express: 969
Preț estimativ în valută:
114.16€ • 136.11$ • 99.01£
114.16€ • 136.11$ • 99.01£
Carte tipărită la comandă
Livrare economică 16-30 martie
Specificații
ISBN-13: 9783030664145
ISBN-10: 3030664147
Pagini: 797
Ilustrații: XXVII, 797 p. 115 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.14 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
ISBN-10: 3030664147
Pagini: 797
Ilustrații: XXVII, 797 p. 115 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.14 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
Cuprins
W01 - Adversarial Robustness in the Real World.- A Deep Dive into Adversarial Robustness in Zero-Shot Learning.- Towards Analyzing Semantic Robustness of Deep Neural Networks.- Likelihood Landscapes: A Unifying Principle Behind Many Adversarial Defenses.- Deep k-NN Defense Against Clean-label Data Poisoning Attacks.- Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings.- Adversarial Shape Perturbations on 3D Point Clouds.- Jacks of All Trades, Masters Of None: Addressing Distributional Shift and Obtrusiveness via Transparent Patch Attacks.- Evaluating Input Perturbation Methods for Interpreting CNNs and Saliency Map Comparison.- Adversarial Robustness of Open-set Recognition: Face Recognition and Person Re-identification.- WaveTransform: Crafting Adversarial Examples via Input Decomposition.- Robust Super-Resolution of Real Faces using Smooth Features.- Improved Robustness to Open Set Inputs via Tempered Mixup.- Defenses Against Multi-Sticker Physical Domain Attacks on Classifiers.- Adversarial Attack on Deepfake Detection using RL based Texture Patches.- W02 - BioImage Computation.- A Subpixel Residual U-Net and Feature Fusion Preprocessing for Retinal Vessel Segmentation.- Attention Deeplabv3+: Multi-level Context Attention Mechanism for Skin Lesion Segmentation.- Automated Assessment of the Curliness of Collagen Fiber in Breast Cancer.- Bionic Tracking: Using Eye Tracking to Track Biological Cells in Virtual Reality.- Cardiac MR Image Sequence Segmentation with Temporal Motion Encoding.- Classifying Nuclei Shape Heterogeneity in Breast Tumors with Skeletons.- DenoiSeg: Joint Denoising and Segmentation.- DoubleU-Net: Colorectal Cancer Diagnosis and Gland Instance Segmentation with Text-Guided Feature Control.- Dynamic Image for 3D MRI Image Alzheimer's Disease Classification.- Feedback Attention for Cell Image Segmentation.- Improving Blind Spot Denoising for Microscopy.- Learning toRestore ssTEM Images from Deformation and Corruption.- Learning to Segment Microscopy Images with Lazy Labels.- Multi-CryoGAN: Reconstruction of Continuous Conformations in Cryo-EM Using Generative Adversarial Networks.- Probabilistic Deep Learning for Instance Segmentation.- Registration of Multi-modal Volumetric Images by Establishing Cell Correspondence.- W2S: Microscopy Data with Joint Denoising and Super-Resolution for Wide field to SIM Mapping.- W03 - Egocentric Perception, Interaction and Computing.- An investigation of Deep Visual Architectures based on Preprocess Using the Retinal Transform.- Data Augmentation Techniques for the Video Question Answering Task.- W05 - Eye Gaze in VR, AR, and in the Wild.- Efficiency in Real-time Webcam Gaze Tracking.- Hierarchical HMM for Eye Movement Classification.- Domain Adaptation for Eye Segmentation.- EyeSeg: Fast and Efficient Few-Shot Semantic Segmentation.- W10 - TASK-CV Workshop and VisDA Challenge.- Class-imbalanced Domain Adaptation: An Empirical Odyssey.- Sequential Learning for Domain Generalization.- Generating Visual and Semantic Explanations with Multi-task Network.- SpotPatch: Parameter-Efficient Transfer Learning for Mobile Object Detection.- Using Sentences as Semantic Representations in Large Scale Zero-Shot Learning.- Adversarial Transfer of Camera Pose Regression.- Disentangled Image Generation for Unsupervised Domain Adaptation.- Domain Generalization using Shape Representation.- Bi-Dimensional Feature Alignment for Cross-Domain Object Detection.- Bayesian Zero-Shot Learning.- Self-Supervision for 3D Real-World Challenges.- Diversified Mutual Metric Learning.- Domain Generalization vs Data Augmentation: an Unbiased Perspective.- W11 - Bodily Expressed Emotion Understanding.- Panel: Bodily Expressed Emotion Understanding Research: A Multidisciplinary Perspective.- Emotion Understanding in Videos Through Body, Context, and Visual-Semantic Embedding Loss.- Noisy Student Training using Body Language Dataset Improves Facial Expression Recognition.- Emotion Embedded Pose Generation.- Understanding Political Communication Styles in Televised Debates via Body Movements.