Computer Vision – ACCV 2020: 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part IV: Lecture Notes in Computer Science, cartea 12625
Editat de Hiroshi Ishikawa, Cheng-Lin Liu, Tomas Pajdla, Jianbo Shien Limba Engleză Paperback – 25 feb 2021
Part I: 3D computer vision; segmentation and grouping
Part II: low-level vision, image processing; motion and tracking
Part III: recognition and detection; optimization, statistical methods, and learning; robot vision
Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis
Part VI: applications of computer vision; vision for X; datasets and performance analysis
*The conference was held virtually.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (6) | 639.65 lei 3-5 săpt. | +45.33 lei 7-13 zile |
| Springer International Publishing – 25 feb 2021 | 639.65 lei 3-5 săpt. | +45.33 lei 7-13 zile |
| Springer International Publishing – 26 feb 2021 | 640.83 lei 6-8 săpt. | |
| Springer International Publishing – 26 feb 2021 | 640.83 lei 6-8 săpt. | |
| Springer International Publishing – 27 feb 2021 | 641.45 lei 6-8 săpt. | |
| Springer International Publishing – 27 feb 2021 | 642.40 lei 6-8 săpt. | |
| Springer International Publishing – 25 feb 2021 | 643.20 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.37 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 390.69 lei - 20%
Preț: 527.36 lei - 15%
Preț: 388.50 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 389.72 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 532.41 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 639.72 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 639.65 lei
Preț vechi: 799.56 lei
-20% Nou
Puncte Express: 959
Preț estimativ în valută:
113.19€ • 132.73$ • 99.40£
113.19€ • 132.73$ • 99.40£
Carte disponibilă
Livrare economică 17-31 ianuarie 26
Livrare express 03-09 ianuarie 26 pentru 55.32 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030695378
ISBN-10: 3030695379
Pagini: 715
Ilustrații: XVIII, 715 p. 284 illus., 278 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.01 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
ISBN-10: 3030695379
Pagini: 715
Ilustrații: XVIII, 715 p. 284 illus., 278 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.01 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
Cuprins
Deep Learning for Computer Vision.- In-sample Contrastive Learning and Consistent Attention for Weakly Supervised Object Localization.- Exploiting Transferable Knowledge for Fairness-aware Image Classification.- Introspective Learning by Distilling Knowledge from Online Self-explanation.- Hyperparameter-Free Out-of-Distribution Detection Using Cosine Similarity.- Meta-Learning with Context-Agnostic Initialisations.- Second Order enhanced Multi-glimpse Attention in Visual Question Answering.- Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection.- Unified Density-Aware Image Dehazing and Object Detection in Real-World Hazy Scenes.- Part-aware Attention Network for Person Re-Identification.- Image Captioning through Image Transformer.- Feature Variance Ratio-Guided Channel Pruning for Deep Convolutional Network Acceleration.- Learn more, forget less: Cues from human brain.- Knowledge Transfer Graph for Deep Collaborative Learning.- Regularizing Meta-Learning via Gradient Dropout.- Vax-a-Net: Training-time Defence Against Adversarial Patch Attacks.- Towards Optimal Filter Pruning with Balanced Performance and Pruning Speed.- Contrastively Smoothed Class Alignment for Unsupervised Domain Adaptation.- Double Targeted Universal Adversarial Perturbations.- Adversarially Robust Deep Image Super-Resolution using Entropy Regularization.- Online Knowledge Distillation via Multi-branch Diversity Enhancement.- Rotation Equivariant Orientation Estimation for Omnidirectional Localization.- Contextual Semantic Interpretability.- Few-Shot Object Detection by Second-order Pooling.- Depth-Adapted CNN for RGB-D cameras.- Generative Models for Computer Vision.- Over-exposure Correction via Exposure and Scene Information Disentanglement.- Novel-View Human Action Synthesis.- Augmentation Network for Generalised Zero-Shot Learning.- Local Facial Makeup Transfer via Disentangled Representation.- OpenGAN: Open Set Generative Adversarial Networks.- CPTNet: Cascade Pose Transform Network for Single Image Talking Head Animation.- TinyGAN: Distilling BigGAN for Conditional Image Generation.- A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings.- RF-GAN: A Light and Reconfigurable Network for Unpaired Image-to-Image Translation.- GAN-based Noise Model for Denoising Real Images.- Emotional Landscape Image Generation Using Generative Adversarial Networks.- Feedback Recurrent Autoencoder for Video Compression.- MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative Adversarial Network.- DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution.- dpVAEs: Fixing Sample Generation for Regularized VAEs.- MagGAN: High-Resolution Face Attribute Editing with Mask-Guided Generative Adversarial Network.- EvolGAN: Evolutionary Generative Adversarial Networks.- Sequential View Synthesis with Transformer.