Computer Vision – ACCV 2020: 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part III: Lecture Notes in Computer Science, cartea 12624
Editat de Hiroshi Ishikawa, Cheng-Lin Liu, Tomas Pajdla, Jianbo Shien Limba Engleză Paperback – 25 feb 2021
Part I: 3D computer vision; segmentation and grouping
Part II: low-level vision, image processing; motion and tracking
Part III: recognition and detection; optimization, statistical methods, and learning; robot vision
Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis
Part VI: applications of computer vision; vision for X; datasets and performance analysis
*The conference was held virtually.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (6) | 639.65 lei 3-5 săpt. | +45.33 lei 7-13 zile |
| Springer International Publishing – 25 feb 2021 | 639.65 lei 3-5 săpt. | +45.33 lei 7-13 zile |
| Springer International Publishing – 26 feb 2021 | 640.83 lei 6-8 săpt. | |
| Springer International Publishing – 26 feb 2021 | 640.83 lei 6-8 săpt. | |
| Springer International Publishing – 27 feb 2021 | 641.45 lei 6-8 săpt. | |
| Springer International Publishing – 27 feb 2021 | 642.40 lei 6-8 săpt. | |
| Springer International Publishing – 25 feb 2021 | 643.20 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.37 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 390.69 lei - 20%
Preț: 527.36 lei - 15%
Preț: 388.50 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 389.72 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 532.41 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 639.72 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 643.20 lei
Preț vechi: 804.00 lei
-20% Nou
Puncte Express: 965
Preț estimativ în valută:
113.82€ • 133.46$ • 99.96£
113.82€ • 133.46$ • 99.96£
Carte tipărită la comandă
Livrare economică 06-20 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030695347
ISBN-10: 3030695344
Pagini: 757
Ilustrații: XVIII, 757 p. 245 illus., 229 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.07 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
ISBN-10: 3030695344
Pagini: 757
Ilustrații: XVIII, 757 p. 245 illus., 229 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.07 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
Cuprins
Recognition and Detection.- End-to-end Model-based Gait Recognition.- Horizontal Flipping Assisted Disentangled Feature Learning for Semi-Supervised Person Re-Identification.- MIX'EM: Unsupervised Image Classification using a Mixture of Embeddings.- Backbone Based Feature Enhancement for Object Detection.- Long-Term Cloth-Changing Person Re-identification.- Any-Shot Object Detection.- Background Learnable Cascade for Zero-Shot Object Detection.- Unsupervised Domain Adaptive Object Detection using Forward-Backward Cyclic Adaptation.- COG: COnsistent data auGmentation for object perception.- Synthesizing the Unseen for Zero-shot Object Detection.- Fully Supervised and Guided Distillation for One-Stage Detectors.- Visualizing Color-wise Saliency of Black-Box Image Classification Models.- ERIC: Extracting Relations Inferred from Convolutions.- D2D: Keypoint Extraction with Describe to Detect Approach.- Accurate Arbitrary-Shaped Scene Text Detection via Iterative Polynomial ParameterRegression.- Adaptive Spotting: Deep Reinforcement Object Search in 3D Point Clouds.- Efficient Large-Scale Semantic Visual Localization in 2D Maps.- Synthetic-to-Real Unsupervised Domain Adaptation for Scene Text Detection in the Wild.- Scale-Aware Polar Representation for Arbitrarily-Shaped Text Detection.- Branch Interaction Network for Person Re-identification.- BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images.- Jointly Discriminating and Frequent Visual Representation Mining.- Discrete Spatial Importance-Based Deep Weighted Hashing.- Low-level Sensor Fusion Network for 3D Vehicle Detection using Radar Range-Azimuth Heatmap and Monocular Image.- MLIFeat: Multi-level information fusion based deep local features.- CLASS: Cross-Level Attention and Supervision for Salient Objects Detection.- Cascaded Transposed Long-range Convolutions for Monocular Depth Estimation.- Optimization, Statistical Methods, and Learning.- Bridging Adversarial and Statistical Domain Transfer via Spectral Adaptation Networks.- Large-Scale Cross-Domain Few-Shot Learning.- Channel Pruning for Accelerating Convolutional Neural Networks via Wasserstein Metric.- Progressive Batching for Efficient Non-linear Least Squares.- Fast and Differentiable Message Passing on Pairwise Markov Random Fields.- A Calibration Method for the Generalized Imaging Model with Uncertain Calibration Target Coordinates.- Graph-based Heuristic Search for Module Selection Procedure in Neural Module Network.- Towards Fast and Robust Adversarial Training for Image Classification.- Few-Shot Zero-Shot Learning: Knowledge Transfer with Less Supervision.- Lossless Image Compression Using a Multi-Scale Progressive Statistical Model.- Spatial Class Distribution Shift in Unsupervised Domain Adaptation: Local Alignment Comes to Rescue.- Robot Vision.- Point Proposal based Instance Segmentation with Rectangular Masks for Robot Picking Task.- Multi-task Learning with Future States for Vision-based Autonomous Driving.- MTNAS: Search Multi-Task Networks for Autonomous Driving.- Compact and Fast Underwater Segmentation Network for Autonomous Underwater Vehicles.- L2R GAN: LiDAR-to-Radar Translation.- V2A - Vision to Action: Learning robotic arm actions based on vision and language.- To Filter Prune, or to Layer Prune, That Is The Question.