Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part II: Lecture Notes in Computer Science, cartea 12713
Editat de Kamal Karlapalem, Hong Cheng, Naren Ramakrishnan, R. K. Agrawal, P. Krishna Reddy, Jaideep Srivastava, Tanmoy Chakrabortyen Limba Engleză Paperback – 8 mai 2021
Part I: Applications of knowledge discovery and data mining of specialized data;
Part II: Classical data mining; data mining theory and principles; recommender systems; and text analytics;
Part III: Representation learning and embedding, and learning from data.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (3) | 531.50 lei 3-5 săpt. | +30.32 lei 6-12 zile |
| Springer International Publishing – 8 mai 2021 | 531.50 lei 3-5 săpt. | +30.32 lei 6-12 zile |
| Springer International Publishing – 8 mai 2021 | 644.45 lei 6-8 săpt. | |
| Springer International Publishing – 9 mai 2021 | 647.77 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.37 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 390.69 lei - 20%
Preț: 527.36 lei - 15%
Preț: 388.50 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 389.72 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 532.41 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 639.72 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 644.45 lei
Preț vechi: 805.57 lei
-20% Nou
Puncte Express: 967
Preț estimativ în valută:
114.04€ • 133.72$ • 100.15£
114.04€ • 133.72$ • 100.15£
Carte tipărită la comandă
Livrare economică 06-20 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030757649
ISBN-10: 3030757641
Pagini: 774
Ilustrații: XXVI, 774 p. 30 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.1 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030757641
Pagini: 774
Ilustrații: XXVI, 774 p. 30 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.1 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Classical Data Mining,. Mining Frequent Patterns from Hypergraph Databases.- Discriminating Frequent Pattern based Supervised Graph Embedding for Classification.- Mining Sequential Patterns in Uncertain Databases Using Hierarchical Index Structure.- Similarity Forest Revisited: a Swiss Army Knife for Machine Learning.- Discriminative Representation Learning for Cross-domain Sentiment Classification.- SAGCN: Towards Structure-Aware Deep Graph Convolutional Networks on Node Classification.- Hierarchical Learning of Dependent Concepts for Human Activity Recognition.- Improving Short Text Classification Using Context-Sensitive Representations and Content-Aware Extended Topic Knowledge.- A Novel Method for Offline Handwritten Chinese Character Recognition under the Guidance of Print.- Upgraded Attention-based Local FeatureLearning Block for speech emotion recognition.- Memorization in Deep Neural Networks: Does the Loss Function matter.- Gaussian Soft Decision Trees for Interpretable Feature-Based Classification.- Efficient Nodes Representation Learning with Residual Feature Propagation.- Progressive AutoSpeech: An efficient and general framework for automatic speech classification.- CrowdTeacher: Robust Co-teaching with Noisy Answers & Sample-specific Perturbations for Tabular Data.- Effective and Adaptive Multi-metric Refined Similarity Graph Fusion for Multi-view Clustering.- aHCQ: Adaptive Hierarchical Clustering based Quantization Framework for Deep Neural Networks.- Maintaining Consistency with Constraints: a Constrained Deep Clustering method.- Data Mining Theory and Principles.- Towards multi-label Feature selection by Instance and Label Selections.- FARF: A Fair and Adaptive Random Forests Classifier.- Sparse Spectrum Gaussian Process for Bayesian Optimization.- Densely Connected Graph Attention Network based on Iterative Path Reasoning for Document-level Relation Extraction.- Causal Inference Using Global Forecasting Models for Counterfactual Prediction. -CED-BGFN: Chinese Event Detection via Bidirectional Glyph-aware Dynamic Fusion Network.- Learning Finite Automata with Shuffle.- Active Learning based Similarity Filtering for Efficient and Effective Record Linkage.- Stratified Sampling for Extreme Multi-Label Data.- Vertical Federated Learning for Higher-order Factorization Machines.- dK-Projection: Publishing Graph Joint degree distribution with Node Differential Privacy.- Recommender Systems.- Improving Sequential Recommendation with Attribute-augmented Graph Neural Networks.- Exploring Implicit Relationships in Social Network for Recommendation Systems.- Transferable Contextual Bandits with Prior Observations.- Modeling Hierarchical Intents and Selective Current Interest for Session-based Recommendation.- A Finetuned language model for Recommending cQA-QAs for enriching Textbooks.- XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction.- Learning Multiclass Classifier Under Noisy Bandit Feedback.- Diversify orNot: Dynamic Diversification for Personalized Recommendation.- Multi-criteria and Review-based Overall Rating Prediction.- W2FM: The Doubly-Warped Factorization Machine.- Causal Combinatorial Factorization Machines for Set-wise Recommendation.- Transformer-based Multi-task Learning for Queuing Time Aware Next POI Recommendation.- Joint Modeling Dynamic Preferences of Users and Items Using Reviews for Sequential Recommendation.- Box4Rec: Box Embedding for Sequential Recommendation.- UKIRF: An Item Rejection Framework for Improving Negative Items Sampling in One-Class Collaborative Filtering.- IACN: Influence-aware and Attention-based Co-evolutionary Network for Recommendation.- Nonlinear Matrix Factorization via Neighbor Embedding.- Deconfounding representation learning based on user interactions in Recommendation Systems.- Personalized Regularization Learning for Fairer Matrix Factorization.- Instance Selection for Online Updating in Dynamic Recommender Environments.- Text Analytics.-Fusing Essential Knowledge for Text-Based Open-Domain Question Answering. - TSSE-DMM: Topic Modeling for Short Texts based on Topic Subdivision and Semantic Enhancement.- SILVER: Generating Persuasive Chinese Product Pitch.- Capturing SQL Query Overlapping via SubtreeCopy for Cross-domain Context-dependent SQLGeneration.- HScodeNet: Combining Hierarchical Sequential and Global Spatial Information of Text for Commodity HS Code Classification.- PLVCG: A Pretraining Based Model for Live Video Comment Generation.- Inducing Rich Interaction Structures between Words for Document-level Event Argument Extraction.- Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking.- TANTP: Conversational Emotion Recognition Using Tree-Based Attention Networks with Transformer Pre-training.- Semantic-syntax Cascade Injection Model for Aspect Sentiment Triple Extraction.- Modeling Inter-Aspect Relationship with Conjunction for Aspect-based Sentiment Analysis.