Cantitate/Preț
Produs

Advances in Knowledge Discovery and Data Mining: 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings, Part I: Lecture Notes in Computer Science, cartea 10234

Editat de Jinho Kim, Kyuseok Shim, Longbing Cao, Jae-Gil Lee, Xuemin Lin, Yang-Sae Moon
en Limba Engleză Paperback – 23 apr 2017
This two-volume set, LNAI 10234 and 10235, constitutes the thoroughly refereed proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2017, held in Jeju, South Korea, in May 2017. The 129 full papers were carefully reviewed and selected from 458 submissions. They are organized in topical sections named: classification and deep learning; social network and graph mining; privacy-preserving mining and security/risk applications; spatio-temporal and sequential data mining; clustering and anomaly detection; recommender system; feature selection; text and opinion mining; clustering and matrix factorization; dynamic, stream data mining; novel models and algorithms; behavioral data mining; graph clustering and community detection; dimensionality reduction.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 64795 lei  6-8 săpt.
  Springer International Publishing – 23 apr 2017 64795 lei  6-8 săpt.
  Springer International Publishing – 23 apr 2017 64875 lei  6-8 săpt.

Din seria Lecture Notes in Computer Science

Preț: 64795 lei

Preț vechi: 80993 lei
-20% Nou

Puncte Express: 972

Preț estimativ în valută:
11464 13376$ 10023£

Carte tipărită la comandă

Livrare economică 16-30 ianuarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319574530
ISBN-10: 3319574531
Pagini: 841
Ilustrații: XXXII, 841 p. 242 illus.
Dimensiuni: 155 x 235 x 44 mm
Greutate: 1.2 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence

Locul publicării:Cham, Switzerland

Cuprins

Classification and deep learning.- Social network and graph mining.- Privacy-preserving mining and security/risk applications.- Spatio-temporal and sequential data mining.- Clustering and anomaly detection.- Recommender system.- Feature selection.- Text and opinion mining.- Clustering and matrix factorization.- Dynamic, stream data mining.- Novel models and algorithms.- Behavioral data mining.- Graph clustering and community detection.- Dimensionality reduction.

Caracteristici

Includes supplementary material: sn.pub/extras Includes supplementary material: sn.pub/extras