Web and Big Data: Lecture Notes in Computer Science
Editat de Leong Hou U, Marc Spaniol, Yasushi Sakurai, Junying Chenen Limba Engleză Paperback – 19 aug 2021
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 469.52 lei 6-8 săpt. | |
| Springer – 19 aug 2021 | 469.52 lei 6-8 săpt. | |
| Springer – 19 aug 2021 | 686.05 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.37 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 390.69 lei - 20%
Preț: 527.36 lei - 15%
Preț: 388.50 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 389.72 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 532.41 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 639.72 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 686.05 lei
Preț vechi: 857.55 lei
-20% Nou
Puncte Express: 1029
Preț estimativ în valută:
121.40€ • 142.36$ • 106.61£
121.40€ • 142.36$ • 106.61£
Carte tipărită la comandă
Livrare economică 06-20 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030858988
ISBN-10: 3030858987
Pagini: 484
Ilustrații: XX, 462 p. 165 illus., 143 illus. in color.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.73 kg
Ediția:1st edition 2021
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3030858987
Pagini: 484
Ilustrații: XX, 462 p. 165 illus., 143 illus. in color.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.73 kg
Ediția:1st edition 2021
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Graph Mining.- Co-Authorship Prediction Based on Temporal Graph Attention.- Degree-specific Topology Learning for Graph Convolutional Network.- Simplifying Graph Convolutional Networks as Matrix Factorization.- RASP: Graph Alignment through Spectral Signatures.- FANE: A Fusion-based Attributed Network Embedding Framework.- Data Mining.- What Have We Learned from Open Review? .- Unsafe Driving Behavior Prediction for Electric Vehicles.- Resource Trading with Hierarchical Game for Computing-Power Network Market.- Analyze and Evaluate Database-Backed Web Applications with WTool.- Semi-supervised Variational Multi-view Anomaly Detection.- A Graph Attention Network Model for GMV Forecast on Online Shopping Festival.- Suicide Ideation Detection on Social Media during COVID-19 via Adversarial and Multi-task Learning.- Data Management.- An Efficient Bucket Logging for Persistent Memory.- Data Poisoning Attacks on Crowdsourcing Learning.- Dynamic Environment Simulation for Database PerformanceEvaluation.- LinKV: an RDMA-enabled KVS for High Performance and Strict Consistency under Skew.- Cheetah: An Adaptive User-space Cache for Non-volatile Main Memory File Systems.- Topic Model and Language Model Learning.- Chinese Word Embedding Learning with Limited Data.- Sparse Biterm Topic Model for Short Texts.- EMBERT: A Pre-trained Language Model for Chinese Medical Text Mining.- Self-Supervised Learning for Semantic Sentence Matching with Dense Transformer Inference Network.- An Explainable Evaluation of Unsupervised Transfer Learning for Parallel Sentences Mining.- Text Analysis.- Leveraging Syntactic Dependency and Lexical Similarity for Neural Relation Extraction.- A Novel Capsule Aggregation Framework for Natural Language Inference.- Learning Modality-Invariant Features by Cross-Modality Adversarial Network for Visual Question Answering.- Difficulty-controllable Visual Question Generation.- Incorporating Typological Features into Language Selection for Multilingual Neural Machine Translation.- Removing Input Confounder for Translation Quality Estimation via a Causal Motivated Method.- Text Classification.- Learning Refined Features for Open-World Text Classification.- Emotion Classification of Text Based on BERT and Broad Learning System.- Improving Document-level Sentiment Classification with User-Product Gated Network.- Integrating RoBERTa Fine-Tuning and User Writing Styles for Authorship Attribution of Short Texts.- Dependency Graph Convolution and POS Tagging Transferring for Aspect-based Sentiment Classification.- Machine Learning.- DTWSSE: Data Augmentation with a Siamese Encoder for Time Series.- PT-LSTM: Extending LSTM for Efficient processing Time Attributes in Time Series Prediction.- Loss Attenuation for Time Series Prediction Respecting Categories of Values.- PFL-MoE: Personalized Federated Learning Based on Mixture of Experts.- A New Density Clustering Method using Mutual Nearest Neighbor.-