The Cauchy Method of Residues: Volume 2: Theory and Applications: Mathematics and Its Applications, cartea 259
Autor Dragoslav S. Mitrinovic, J.D. Keckicen Limba Engleză Paperback – 26 oct 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 368.79 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 26 oct 2012 | 368.79 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 30 noi 2001 | 619.75 lei 6-8 săpt. | |
| Hardback (1) | 626.52 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 30 apr 1984 | 626.52 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- 20%
Preț: 960.38 lei - 15%
Preț: 632.63 lei - 18%
Preț: 926.23 lei - 18%
Preț: 908.91 lei - 15%
Preț: 623.39 lei - 15%
Preț: 626.82 lei -
Preț: 379.31 lei - 18%
Preț: 965.60 lei - 15%
Preț: 633.26 lei - 15%
Preț: 623.52 lei -
Preț: 379.89 lei - 15%
Preț: 626.68 lei -
Preț: 405.52 lei -
Preț: 379.51 lei - 15%
Preț: 679.01 lei -
Preț: 376.17 lei -
Preț: 374.91 lei - 20%
Preț: 566.92 lei - 15%
Preț: 628.73 lei - 20%
Preț: 624.91 lei -
Preț: 380.46 lei - 15%
Preț: 626.68 lei - 15%
Preț: 624.01 lei -
Preț: 377.32 lei - 15%
Preț: 624.01 lei - 15%
Preț: 618.64 lei -
Preț: 383.03 lei -
Preț: 371.00 lei - 15%
Preț: 614.24 lei - 15%
Preț: 629.85 lei
Preț: 368.79 lei
Nou
Puncte Express: 553
Preț estimativ în valută:
65.26€ • 76.52$ • 57.31£
65.26€ • 76.52$ • 57.31£
Carte tipărită la comandă
Livrare economică 31 ianuarie-14 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401048835
ISBN-10: 9401048835
Pagini: 212
Ilustrații: X, 198 p.
Dimensiuni: 160 x 240 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401048835
Pagini: 212
Ilustrații: X, 198 p.
Dimensiuni: 160 x 240 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Introduction.- 1.1. Organization and References.- 1.2. Errata for Volume 1.- 1.3. Notations, Definitions and Theorems.- 2. Evaluation of Residues.- 3. Applications of Calculus of Residues in the Theory of Functions.- 3.1. A Generalization of the Principle of the Argument.- 3.2. Runge’s Phenomenon.- 3.3. Expansion into Bürmann’s Series.- 3.4. Carleman’s Theorem.- 3.5. Analytic Continuation of Cauchy Type Integrals.- 3.6. An Asymptotic Formula.- 3.7. Miscellaneous Applications.- 4. Evaluation of Real Definite Integrals by Means of Residues.- 4.1. Integrals with Infinite Limits.- 4.2. Integrals with Finite Limits.- 4.3. ?ebyšev’s Approximation of the Integral of a Positive Function.- 4.4. A Note on some Papers of Ostrogradski and Bouniakowski.- 5. Evaluation of Finite and Infinite Sums by Residues.- 5.1. Gauss’ Sums.- 5.2. The Riemann Zeta Function.- 5.3. Miscellaneous Summations.- 6. Applications of Calculus of Residues to Special Functions.- 6.1. Polygamma Functions of Arbitrary Order.- 6.2. A Connection Between the Exponential and the Gamma Function.- 6.3. Residues of Some Functions Related to the Gamma Function.- 6.4. Some Integrals Involving the Gamma Function.- 7. Master’s dissertation of J. V. Sohocki.- 7.1. Introduction.- 7.2. Properties of Residues.- 7.3. Two Formulas of Lagrange.- 7.4. Continued Fractions.- 7.5. Legendre’s Polynomials.- 7.6. Expansion of a Function by Means of Continued Fractions.- 8. On the Principal and the Generalized Value of Improper Integrals.- 8.1. Substitution in Complex Integrals.- 8.2. The Principal Value for Higher Order Poles.- 8.3. The Principal Value in the Case when the Limits of Integration are Singular Points.- 8.4. Generalized Value of an Improper Integral with Infinite Limits.- 8.5. Generalized Value of anImproper Integral Between Finite Limits.- 9. Applications of the Calculus of Residues to Numerical Evaluation of Integrals.- 10. Inclusive Calculus of Residues.- 11. Complex Polynomials Orthogonal on the Semicircle.- 11.1. Introduction.- 11.2. Orthogonality on the Semicircle.- 11.3. Existence and Representation of ?n.- 11.4. Recurrence Relation.- 11.5. Jacobi Weight.- 11.6. Symmetric Weights and Gegenbauer Weights.- 11.7. The zeros of ?n(Z).- 12. A Representation of Half Plane Meromorphic Functions.- 13. Calculus of Residues and Distributions.- 13.1. Test Functions and Distributions.- 13.2. The Spaces D and D’.- 13.3. The Spaces E and E’.- 13.4. The Spaces$${\mathcal{O}_a}$$And$${\mathcal{O}_a}'$$.- 13.5. A Distributional Representation of Half Plane Meromorphic Functions.- 13.6. A Generalization of the Residue Theorem.- 13.7. A Generalization of the Cauchy Integral Theorem for an Infinite Strip.- Name Index.