Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation: Perspectives in Neural Computing
Autor Mark Girolamien Limba Engleză Paperback – 25 iun 1999
Din seria Perspectives in Neural Computing
- 20%
Preț: 948.32 lei - 20%
Preț: 626.07 lei - 20%
Preț: 1114.01 lei - 20%
Preț: 949.27 lei - 20%
Preț: 623.39 lei - 20%
Preț: 631.08 lei - 20%
Preț: 951.34 lei - 20%
Preț: 314.86 lei - 20%
Preț: 326.42 lei - 20%
Preț: 614.83 lei - 20%
Preț: 623.52 lei - 20%
Preț: 322.74 lei - 20%
Preț: 622.77 lei - 20%
Preț: 616.72 lei - 15%
Preț: 619.12 lei - 20%
Preț: 317.36 lei - 20%
Preț: 314.04 lei - 20%
Preț: 618.64 lei - 20%
Preț: 430.78 lei - 20%
Preț: 621.49 lei - 18%
Preț: 755.90 lei - 20%
Preț: 314.22 lei - 20%
Preț: 625.58 lei - 20%
Preț: 623.22 lei - 20%
Preț: 627.51 lei - 20%
Preț: 623.71 lei - 20%
Preț: 322.43 lei - 20%
Preț: 321.49 lei - 20%
Preț: 323.10 lei
Preț: 621.81 lei
Preț vechi: 777.27 lei
-20% Nou
Puncte Express: 933
Preț estimativ în valută:
110.05€ • 129.06$ • 96.49£
110.05€ • 129.06$ • 96.49£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781852330668
ISBN-10: 185233066X
Pagini: 284
Ilustrații: IX, 271 p. 9 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.45 kg
Ediția:1st Edition.
Editura: SPRINGER LONDON
Colecția Springer
Seria Perspectives in Neural Computing
Locul publicării:London, United Kingdom
ISBN-10: 185233066X
Pagini: 284
Ilustrații: IX, 271 p. 9 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.45 kg
Ediția:1st Edition.
Editura: SPRINGER LONDON
Colecția Springer
Seria Perspectives in Neural Computing
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Self-Organisation and Blind Signal Processing.- 1.2 Outline of Book Chapters.- 2. Background to Blind Source Separation.- 2.1 Problem Formulation.- 2.2 Entropy and Information.- 2.3 A Contrast Function for ICA.- 2.4 Cumulant Expansions of Probability Densities and Higher Order Statistics.- 2.5 Gradient Based Function Optimisation.- 3. Fourth Order Cumulant Based Blind Source Separation.- 3.1 Early Algorithms and Techniques.- 3.2 The Method of Contrast Minimisation.- 3.3 Adaptive Source Separation Methods.- 3.4 Conclusions.- 4. Self-Organising Neural Networks.- 4.1 Linear Self-Organising Neural Networks.- 4.2 Non-Linear Self-Organising Neural Networks.- 4.3 Conclusions.- 5. The Non-Linear PCA Algorithm and Blind Source Separation.- 5.1 Introduction.- 5.2 Non-Linear PCA Algorithm and Source Separation.- 5.3 Non-Linear PCA Algorithm Cost Function.- 5.4 Non-Linear PCA Algorithm Activation Function.- 5.5 Conclusions.- 6. Non-Linear Feature Extraction and Blind Source Separation.- 6.1 Introduction.- 6.2 Structure Identification in Multivariate Data.- 6.3 Neural Network Implementation of Exploratory Projection Pursuit.- 6.4 Neural Exploratory Projection Pursuit and Blind Source Separation.- 6.5 Kurtosis Extrema.- 6.6 Finding Interesting and Independent Directions.- 6.7 Finding Multiple Interesting and Independent Directions Using Symmetric Feedback and Adaptive Whitening.- 6.8 Finding Multiple Interesting and Independent Directions Using Hierarchic Feedback and Adaptive Whitening.- 6.9 Simulations.- 6.10 Adaptive BSS Using a Deflationary EPP Network.- 6.11 Conclusions.- 7. Information Theoretic Non-Linear Feature Extraction And Blind Source Separation.- 7.1 Introduction.- 7.2 Information Theoretic Indices for EPP.- 7.3 Maximum Negentropy Learning.- 7.4 General Maximum Negentropy Learning.- 7.5 Stability Analysis of Generalised Algorithm.- 7.6 Simulation Results.- 7.7 Conclusions.- 8. Temporal Anti-Hebbian Learning.- 8.1 Introduction.- 8.2 Blind Source Separation of Convolutive Mixtures.- 8.3 Temporal Linear Anti-Hebbian Model.- 8.4 Comparative Simulation.- 8.5 Review of Existing Work on Adaptive Separation of Convolutive Mixtures.- 8.6 Maximum Likelihood Estimation and Source Separation.- 8.7 Temporal Anti-Hebbian Learning Based on Maximum Likelihood Estimation.- 8.8 Comparative Simulations Using Varying PDF Models.- 8.9 Conclusions.- 9. Applications.- 9.1 Introduction.- 9.2 Industrial Applications.- 9.3 Biomedical Applications.- 9.4 ICA: A Data Mining Tool.- 9.5 Experimental Results.- 9.6 Conclusions.- References.