Intelligent Systems and Financial Forecasting: Perspectives in Neural Computing
Autor Jason Kingdonen Limba Engleză Paperback – 28 apr 1997
Din seria Perspectives in Neural Computing
- 20%
Preț: 948.32 lei - 20%
Preț: 626.07 lei - 20%
Preț: 1114.01 lei - 20%
Preț: 949.27 lei - 20%
Preț: 623.39 lei - 20%
Preț: 630.57 lei - 20%
Preț: 951.34 lei - 20%
Preț: 314.86 lei - 20%
Preț: 326.42 lei - 20%
Preț: 614.83 lei - 20%
Preț: 623.52 lei - 20%
Preț: 322.74 lei - 20%
Preț: 621.81 lei - 20%
Preț: 622.77 lei - 20%
Preț: 616.72 lei - 15%
Preț: 619.12 lei - 20%
Preț: 317.36 lei - 20%
Preț: 314.04 lei - 20%
Preț: 430.44 lei - 20%
Preț: 621.49 lei - 18%
Preț: 755.90 lei - 20%
Preț: 314.22 lei - 20%
Preț: 625.58 lei - 20%
Preț: 623.22 lei - 20%
Preț: 627.51 lei - 20%
Preț: 623.71 lei - 20%
Preț: 322.43 lei - 20%
Preț: 321.49 lei - 20%
Preț: 323.10 lei
Preț: 618.64 lei
Preț vechi: 773.29 lei
-20%
Puncte Express: 928
Preț estimativ în valută:
109.40€ • 129.72$ • 95.25£
109.40€ • 129.72$ • 95.25£
Carte tipărită la comandă
Livrare economică 30 martie-13 aprilie
Specificații
ISBN-13: 9783540760986
ISBN-10: 3540760989
Pagini: 240
Ilustrații: XII, 227 p. 8 illus.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: SPRINGER LONDON
Colecția Springer
Seria Perspectives in Neural Computing
Locul publicării:London, United Kingdom
ISBN-10: 3540760989
Pagini: 240
Ilustrații: XII, 227 p. 8 illus.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: SPRINGER LONDON
Colecția Springer
Seria Perspectives in Neural Computing
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
1 From Learning Systems to Financial Modelling.- 1.1 Introduction.- 1.2 Adaptive Systems and Financial Modelling.- 1.3 Time Series Analysis.- 1.4 Brief History of Neural Networks.- 1.5 Book Overview.- 1.6 Summary.- 2 Adaptive Systems and Financial Modelling.- 2.1 Financial Modelling.- 2.2 The Problems with Financial Modelling.- 2.3 Evidence Against the Efficiency Hypothesis.- 2.4 An Adaptive Systems Approach.- 2.5 Neural Nets and Financial Modelling.- 2.6 Genetic Algorithms in Finance.- 2.7 Summary.- 3 Feed-Forward Neural Network Modelling.- 3.1 Neural Net Search.- 3.2 MLP Training: The Model.- 3.3 MLP: Model Parameters.- 3.4 The Data.- 3.5 MLP: Training Parameters.- 3.6 Network Performance.- 3.7 Summary.- 4 Genetic Algorithms.- 4.1 Using Genetic Algorithms.- 4.2 Search Algorithms.- 4.3 GA Parameters.- 4.4 A Strategy for GA Search: Transmutation.- 4.5 Summary.- 5 Hypothesising Neural Nets.- 5.1 System Objectives.- 5.2 Hypothesising Neural Network Models.- 5.3 Occam’s Razor and Network Architecture.- 5.4 Testing Occam’s Razor.- 5.5 Strategies using Occam’s Razor.- 5.6 Validation.- 5.7 GA-NN Hybrids: Representations.- 5.8 Summary.- 6 Automating Neural Net Time Series Analysis.- 6.1 System Objectives.- 6.2 ANTAS.- 6.3 Primary Modelling.- 6.4 Secondary Modelling.- 6.5 Validation Modules.- 6.6 Control Flow.- 6.7 Summary.- 7 The Data: The Long Gilt Futures Contract.- 7.1 The Long Gilt Futures Contract.- 7.2 The LGFC Data.- 7.3 Secondary Data.- 7.4 Data Preparation.- 7.5 Data Treatment Modules.- 7.6 Efficient Market Hypothesis and the LGFC.- 7.7 Summary.- 8 Experimental Results.- 8.1 Experimental Design.- 8.2 Phase I — Primary Models.- 8.3 GA-RB Module and Combined Validation.- 8.4 Phase II — Secondary GA-RB Models.- 8.5 Phase III — Validation and Simulated LiveTrading.- 8.6 Controls: Analysis of ANTAS.- 8.7 ANTAS: Conclusions.- 8.8 Summary.- 9 Summary, Conclusions and Future Work.- 9.1 Motivations.- 9.2 Objectives: Neural Networks and Learning.- 9.3 Book Outline and Results.- 9.4 Conclusions.- 9.5 Future Work.- Appendices.- A Test Functions.- B ANTAS Outline Code.- C ANTAS Results.- References.